- #1

- 1,367

- 61

## Main Question or Discussion Point

Hi,

Suppose we have:

[tex]q_{ij}=\int_0^1x^{i+j}\,dx[/tex]

can we prove that

[tex]\mathbf{Q}=[q_{ij}][/tex]

is positive definite matrix? That is:

[tex]\mathbf{d}^T\mathbf{Q}\mathbf{d}>0[/tex]

for all d?

Thanks in advance

Suppose we have:

[tex]q_{ij}=\int_0^1x^{i+j}\,dx[/tex]

can we prove that

[tex]\mathbf{Q}=[q_{ij}][/tex]

is positive definite matrix? That is:

[tex]\mathbf{d}^T\mathbf{Q}\mathbf{d}>0[/tex]

for all d?

Thanks in advance