Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Potential equation problem

  1. Apr 12, 2008 #1
    1. The problem statement, all variables and given/known data
    solve the potential equation on the rectangle 0<x<a, 0<y<b and boundary conditions u(x,b)=100 u(0,y)=0 u(a,y)=100 du/dy(x,0)=0

    2. Relevant equations
    potential equation is d^2u/dx^2+d^2u/dy^2=0 that is the second partial of u with respect to x plus the second partial of u with respect to y equals zero

    3. The attempt at a solution
    I first defined the polynomial v(x,y)=100x/a this has the conditions v(x,b)=100x/b v(0,y)=0 v(a,y)=100 dv/dy(x,0)=0 so I can now write u(x,y)=v(x,y) + w(x,y) where w(x,y) satisfies the conditions of satisfying the potential equation and has boundary conditions w(x,b)=100(1-x/a) w(0,y)=0 w(a,y)=0 dw/dy(x,0)=0
    now all that is needed is to solve w(w,y) I will use seperation of variables and write w(x,y)=X(x)Y(y) then by taking the second partials and adding them together I get X''/X=-Y''/Y since w(x,y) satisfies the potential equation since X and Y have variable independent of one another we can write X''/X=Y''/Y=-L^2 a constant
    so now I have the differential equations X''+XL^2=0 and Y''-YL^2=0
    from the boundary conditions we have X(0)=X(a)=0 and the general solution for X is X=Acos(Lx)+Bsin(Lx) but X(0)=0 so A=0 and we have X=sin(Lx) and since X(a)=0 we define Ln as n(pi)/a and Xn=sin(Lnx) and the general solution of Y=ancosh(Lny)+bnsinh(Lny) and we have Y'(0)=0 so bnLn=0 if Ln=0 then X=0 so we can disregard this and assume bn=0 now I use the principle of superposition and write w(x,Y)=(sum of n=1 to infinity)ancosh(Lny)sin(Lnx) now we use the final boundary condition to find an's w(x,b)=(sum of n=1 to infinity)ancosh(Lnb)sin(Lnx)=100-100x/a
    I multiply each side by sin(mx) and integrate from -a to a since this is the period but if n doesn't equal m then the left hand side is zero by orthonogality and a if m=n so we have ancosh(Lny)*a=integral from -a to a of (100-100x/a)sin(nx)dx from this we see the an values and the answer is w(x,Y)=(sum from n=1 to infinity)ancosh(Lny)sin(Lnx) and u(x,y)=v(x)+w(x,y)
    I'm not sure if this is right or not. is how I found Y look right and did I find the right values of an's and bn's? Thanks for the help and sorry if it looks kind of messy
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted