• Support PF! Buy your school textbooks, materials and every day products Here!

Preimage proof?

  • Thread starter SMA_01
  • Start date
  • #1
218
0

Homework Statement



Define f:S→T, where B[itex]\subseteq[/itex]T. Let f-1(B)={x[itex]\in[/itex]S:f(x)[itex]\in[/itex]B} be the preimage of B.

Demonstrate that for any such map f, f(f-1(B))=B.

My main question is, would I prove this using set inclusion both ways?

I was going to begin by letting an element be in the preimage of B, and explain what that means, then mapping that element to B. Would this be correct?

I just need a push in the right direction.

Thank you.
 

Answers and Replies

  • #2
SammyS
Staff Emeritus
Science Advisor
Homework Helper
Gold Member
11,224
947

Homework Statement



Define f:S→T, where B[itex]\subseteq[/itex]T. Let f-1(B)={x[itex]\in[/itex]S:f(x)[itex]\in[/itex]B} be the preimage of B.

Demonstrate that for any such map f, f(f-1(B))=B.

My main question is, would I prove this using set inclusion both ways?

I was going to begin by letting an element be in the preimage of B, and explain what that means, then mapping that element to B. Would this be correct?

I just need a push in the right direction.

Thank you.
Generally, yes. To show set equality you need to show inclusion in both directions.
 
  • #3
22,097
3,277
Define f:S→T, where B[itex]\subseteq[/itex]T. Let f-1(B)={x[itex]\in[/itex]S:f(x)[itex]\in[/itex]B} be the preimage of B.

Demonstrate that for any such map f, f(f-1(B))=B.

Just to let you know, but that equality is false in general. You need extra assumptions on f.
 
  • #4
218
0
SammyS- Thank you

Micromass- Yes, the function needs to be surjective, right? I'm not sure why there were no assumptions...
 
  • #5
SammyS
Staff Emeritus
Science Advisor
Homework Helper
Gold Member
11,224
947
Just to let you know, but that equality is false in general. You need extra assumptions on f.
I'm very reluctant to question you, micromass.

But isn't the extra assumption of f needed for [itex]f^{-1}\left(f(A)\right)=A[/itex] rather than for [itex]f\left(f^{-1}(B)\right)=B\ ?[/itex]
 
  • #6
22,097
3,277
I'm very reluctant to question you, micromass.

But isn't the extra assumption of f needed for [itex]f^{-1}\left(f(A)\right)=A[/itex] rather than for [itex]f\left(f^{-1}(B)\right)=B\ ?[/itex]
An extra assumption is needed for both. Consider [itex]f(x)=x^2[/itex] and B=[-1,0]. Then [itex]f^{-1}(B)=\{0\}[/itex] and thus [itex]f(f^{-1}(B))=\{0\}[/itex]. The problem is that f is not surjective.
 
  • #7
SammyS
Staff Emeritus
Science Advisor
Homework Helper
Gold Member
11,224
947
An extra assumption is needed for both. Consider [itex]f(x)=x^2[/itex] and B=[-1,0]. Then [itex]f^{-1}(B)=\{0\}[/itex] and thus [itex]f(f^{-1}(B))=\{0\}[/itex]. The problem is that f is not surjective.
Well, my reluctance was well founded!

Thanks as always.
 

Related Threads for: Preimage proof?

  • Last Post
Replies
16
Views
3K
  • Last Post
Replies
2
Views
729
  • Last Post
Replies
2
Views
767
  • Last Post
Replies
3
Views
998
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
3
Views
3K
Replies
4
Views
685
  • Last Post
Replies
1
Views
466
Top