Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Preserves inclusions, unions intersections

  1. Feb 2, 2009 #1
    Let f: A-> B and let Ai[tex]\subset[/tex] A and Bi[tex]\subset[/tex]B for i=0 and i=1. Shwo that f-1 preserves inclusions, unions, intersections, and differences of sets:
    a. B0[tex]\subset[/tex]B1 = f-1(B0)[tex]\subset[/tex]f-1(B1)
    b. f-1(B0[tex]\cup[/tex]B1) = f-1(B0)[tex]\cup[/tex]f-1(B1)
    c. f-1(B0[tex]\cap[/tex]B1) = f-1(B0)[tex]\cap[/tex]f-1(B1)
    d. f-1(B0-B1) = f-1(B0)-f-1(B1)

    Show that f preserves inclusions and unions only:
    e. A0[tex]\subset[/tex]A11 => f(A0)[tex]\subset[/tex]f(A1)
    f. f(A0[tex]\cup[/tex]A1)=f(A0)[tex]\cup[/tex]f(A1)
    g.f(A0[tex]\cap[/tex]A1)=f(A0)[tex]\cap[/tex]f(A1); show that equality holds if f is injective
    h.f(A0-A1)=f(A0)-f(A1); show that equality holds if is injective

    Thanks
     
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted