Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Preserves inclusions, unions intersections

  1. Feb 2, 2009 #1
    Let f: A-> B and let Ai[tex]\subset[/tex] A and Bi[tex]\subset[/tex]B for i=0 and i=1. Shwo that f-1 preserves inclusions, unions, intersections, and differences of sets:
    a. B0[tex]\subset[/tex]B1 = f-1(B0)[tex]\subset[/tex]f-1(B1)
    b. f-1(B0[tex]\cup[/tex]B1) = f-1(B0)[tex]\cup[/tex]f-1(B1)
    c. f-1(B0[tex]\cap[/tex]B1) = f-1(B0)[tex]\cap[/tex]f-1(B1)
    d. f-1(B0-B1) = f-1(B0)-f-1(B1)

    Show that f preserves inclusions and unions only:
    e. A0[tex]\subset[/tex]A11 => f(A0)[tex]\subset[/tex]f(A1)
    f. f(A0[tex]\cup[/tex]A1)=f(A0)[tex]\cup[/tex]f(A1)
    g.f(A0[tex]\cap[/tex]A1)=f(A0)[tex]\cap[/tex]f(A1); show that equality holds if f is injective
    h.f(A0-A1)=f(A0)-f(A1); show that equality holds if is injective

    Thanks
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?
Draft saved Draft deleted



Similar Discussions: Preserves inclusions, unions intersections
  1. Union of intersections (Replies: 3)

Loading...