Pressure in seepage

  • #1
529
2

Homework Statement


Can anyone explain why the pore pressure at C is given by( H1 + z + (h/ H2)(z) ) (y_w) ?

Homework Equations




The Attempt at a Solution


Shouldnt it be ( H1 + z + ) (y_w) only ?
[/B]
 

Attachments

  • 628.png
    628.png
    61.6 KB · Views: 353

Answers and Replies

  • #2
21,631
4,912
The quantity ##(H+z)\gamma_w## is the hydrostatic contribution to the pore pressure at C. The additional contribution of seepage flow to the pore pressure at C is ##\frac{k}{\mu}vz##, where z is the pore flow distance between C and A, k is the permeability, ##\mu## is the water viscosity, and v is the seepage velocity. For point B, the contribution of seepage flow to the pore pressure at B is ##\frac{k}{\mu}vH_2=h\gamma_w##, where ##H_2## is the pore flow distance between B and A and h is the additional head above the water table as a result of seepage flow. So, from the relationship at B, we have:
$$\frac{k}{\mu}v=\frac{h}{H_2}\gamma_w$$Therefore, substituting this into the additional contribution of seepage flow to the pore pressure at C, we obtain ##\frac{h}{H_2}z\gamma_w##. Therefore, the total pore pressure at C is $$(H+z)\gamma_w+\frac{h}{H_2}z\gamma_w=\left(H+z+\frac{h}{H_2}z\right)\gamma_w$$
 
  • #3
529
2
The quantity ##(H+z)\gamma_w## is the hydrostatic contribution to the pore pressure at C. The additional contribution of seepage flow to the pore pressure at C is ##\frac{k}{\mu}vz##, where z is the pore flow distance between C and A, k is the permeability, ##\mu## is the water viscosity, and v is the seepage velocity. For point B, the contribution of seepage flow to the pore pressure at B is ##\frac{k}{\mu}vH_2=h\gamma_w##, where ##H_2## is the pore flow distance between B and A and h is the additional head above the water table as a result of seepage flow. So, from the relationship at B, we have:
$$\frac{k}{\mu}v=\frac{h}{H_2}\gamma_w$$Therefore, substituting this into the additional contribution of seepage flow to the pore pressure at C, we obtain ##\frac{h}{H_2}z\gamma_w##. Therefore, the total pore pressure at C is $$(H+z)\gamma_w+\frac{h}{H_2}z\gamma_w=\left(H+z+\frac{h}{H_2}z\right)\gamma_w$$
I have another example here . In this case , it's downwards seepage ... Why for this case , the Pressure at B is (H1 + z -iz )yw ??? Shouldn't the pressure increases with the depth ?
 

Attachments

  • 629.PNG
    629.PNG
    31.8 KB · Views: 348
  • #4
21,631
4,912
The hydrostatic portion of the pressure variation does increase with depth. But, if the viscous seepage flow is downward, its contribution to the pressure variation must involve a pressure gradient component that can drive the fluid downward.
 
  • #5
529
2
The hydrostatic portion of the pressure variation does increase with depth. But, if the viscous seepage flow is downward, its contribution to the pressure variation must involve a pressure gradient component that can drive the fluid downward.
so , do you mean as the water flow from top to the bottom , so the water is saying to be flow from higher pressure to low pressure ? So , in the case of downwards seepage , the pressure at A > C >B ?
 
  • #6
21,631
4,912
so , do you mean as the water flow from top to the bottom , so the water is saying to be flow from higher pressure to low pressure ? So , in the case of downwards seepage , the pressure at A > C >B ?
Only the viscous seepage portion of the pressure variation, which superimposes linearly upon the hydrostatic portion of the pressure variation, to give the overall total pressure variation.
 
  • #7
529
2
Only the viscous seepage portion of the pressure variation, which superimposes linearly upon the hydrostatic portion of the pressure variation, to give the overall total pressure variation.
So , the pressure due to seepage variation is A > C >B ??
 
  • #9
529
2
The quantity ##(H+z)\gamma_w## is the hydrostatic contribution to the pore pressure at C. The additional contribution of seepage flow to the pore pressure at C is ##\frac{k}{\mu}vz##, where z is the pore flow distance between C and A, k is the permeability, ##\mu## is the water viscosity, and v is the seepage velocity. For point B, the contribution of seepage flow to the pore pressure at B is ##\frac{k}{\mu}vH_2=h\gamma_w##, where ##H_2## is the pore flow distance between B and A and h is the additional head above the water table as a result of seepage flow. So, from the relationship at B, we have:
$$\frac{k}{\mu}v=\frac{h}{H_2}\gamma_w$$Therefore, substituting this into the additional contribution of seepage flow to the pore pressure at C, we obtain ##\frac{h}{H_2}z\gamma_w##. Therefore, the total pore pressure at C is $$(H+z)\gamma_w+\frac{h}{H_2}z\gamma_w=\left(H+z+\frac{h}{H_2}z\right)\gamma_w$$
Can you explain what causes The additional contribution of seepage flow to the pore pressure at C is ##\frac{k}{\mu}vz## ?? Is there any name for the term ?
 
  • #10
21,631
4,912
Can you explain what causes The additional contribution of seepage flow to the pore pressure at C is ##\frac{k}{\mu}vz## ?? Is there any name for the term ?
The differential equation for the variation of pressure in a porous medium (in the vertical direction) is $$\frac{dp}{dz}+\gamma=-\frac{k}{\mu}v$$ where, in this equation, z is the elevation and v is the superficial upward seepage velocity. This is Darcy's Law.
 

Related Threads on Pressure in seepage

Replies
1
Views
1K
T
  • Last Post
Replies
1
Views
1K
T
  • Last Post
Replies
5
Views
955
  • Last Post
Replies
1
Views
579
T
Replies
1
Views
5K
Replies
0
Views
639
  • Last Post
Replies
3
Views
1K
T
  • Last Post
Replies
22
Views
3K
  • Last Post
Replies
11
Views
918
T
  • Last Post
Replies
0
Views
2K
Top