# Probability: Cumulative distribution table for the number of heads when the four coins are tossed

Gold Member

## Homework Statement

(i) Construct the cumulative distribution table for the number of heads when the four coins are tossed. Coins are fair.
(ii) Find the Median.

## The Attempt at a Solution

(i)

x 0 1 2 3 4
f(x) 1/16 5/16 11/16 15/16 1

(ii)
how do we find the median? is it ##1+2/2=1.5?##

Last edited by a moderator:

Homework Helper
Dearly Missed

## Homework Statement

(i) Construct the cumulative distribution table for the number of heads when the four coins are tossed. Coins are fair.
(ii) Find the Median.

## The Attempt at a Solution

(i)

x 0 1 2 3 4
f(x) 1/16 5/16 11/16 15/16 1

(ii)
how do we find the median? is it ##1+2/2=1.5?##

What is the meaning of "median"? How is it defined in your textbook or course notes (or whatever you use)?

Homework Helper
Gold Member
Also, ##1 + 2/2\ne 1.5##.

Gold Member
What is the meaning of "median"? How is it defined in your textbook or course notes (or whatever you use)?
Find the Median of ##x## where ##x## denotes the random variable of the heads.

Gold Member
Also, ##1 + 2/2\ne 1.5##.
seen the error, let me look at the working again, too much reading...

Homework Helper
Dearly Missed
Find the Median of ##x## where ##x## denotes the random variable of the heads.
That is not what I asked you. Here you have just repeated the question in post #1, but that is not what I was seeking from you. I asked you what the word "median" actually means. If you have any kind of distribution (not necessarily the number of heads in 4 coin tosses), that distribution will have a median (or maybe, several "medians"), and I want you to tell me how they would be defined. Is there a formula? If I say that some distribution has a median of 4.84, what is that telling me about the distribution of probabillities?

Last edited:
• Klystron
Gold Member
That is not what I asked you. Here you have just repeated the question in post #1, but that is not what I was seeking from you. I asked you what the word "median" actually means. If you have any kind of distribution (not necessarily the number of heads in 4 coin tosses), that distribution will have a median (or maybe, several "medians"), and I want you to tell me how they would be defined. Is there a formula? If I say that some distribution has a median of 4.84, what is that telling me about the distribution of probabillities?
ok just give me a moment...

Mentor
how do we find the median? is it ##1+2/2=1.5?##

seen the error, let me look at the working again, too much reading...
This is not complicated. As @LCKurtz wrote in post #3, ##1 + 2/2 \ne 1.5##. Perhaps you meant ##\frac {1 + 2} 2 = 1.5##, or without LaTeX, (1 + 2)/2 = 1.5. Without parentheses, 1 + 2/2 means 1 + 1 which equals 2.

Gold Member
As a hint, do you know about percentiles in general, and maybe the median as percentile?

Gold Member
ok, my approach on this, on considering the probability distribution table for the above problem...
where, ## F(X)## is the cumulative distribution and ##P(X)## is the probability distribution,

## F(X) = P(X≤2) = 1/16 + 4/16 + 11/16 ≅0.7##
and
## P(X≥2) = 6/16 + 4/16 +1/16=11/16≅0.7##
therefore, the Median = 2.

Gold Member
As a hint, do you know about percentiles in general, and maybe the median as percentile?
I would be interested in seeing you use percentiles on this problem.

Homework Helper
Dearly Missed
I would be interested in seeing you use percentiles on this problem.

Attached is a plot of the cumulative distribution function, together with the line at probability = 0.5. The median is the point at which the two graphs cross.

#### Attachments

• binomial_cdf.png
2.6 KB · Views: 296
• chwala
Gold Member
Attached is a plot of the cumulative distribution function, together with the line at probability = 0.5. The median is the point at which the two graphs cross.
Thanks Ray, is there another method that you can use apart from the graph. Thanks for your input.

Homework Helper
Dearly Missed
Thanks Ray, is there another method that you can use apart from the graph. Thanks for your input.

Yes. The median is either at the 50th percentile (if there is one), or else is the point at which the CDF jumps from a value < 0.5 to a value > 0.5 as we go through that point. For example, in the above we have the cdf ##F(x)##:
$$\begin{array}{cc} x & F(x) \\ \hline 0 & 0.0625 \\ 1 & 0.3125 \\ 2 & 0.6875 \\ 3 & 0.9375 \\ 4 & 1 \end{array}$$
The function ##F(x)## jumps up from below 0.5 to above 0.5 as ##x## passes through ##2##, so ##x = 2## is the median.

Gold Member
since the coins are fair, this problem is equivalent to looking for the midpoint of Pascal's Triangle for n= 4. By symmetry you can eyeball it and see the midpoint at ##x = 2##

In fact any symmetric distribution will have its midpoint as a median.

(Footnotes: if the first moment exists, then we also have midpoint = mean for symmetric distribution; medians in general are not unique so there can be a range of values associated with the median though.)

Homework Helper
Dearly Missed
since the coins are fair, this problem is equivalent to looking for the midpoint of Pascal's Triangle for n= 4. By symmetry you can eyeball it and see the midpoint at ##x = 2##

In fact any symmetric distribution will have its midpoint as a median.

(Footnotes: if the first moment exists, then we also have midpoint = mean for symmetric distribution; medians in general are not unique so there can be a range of values associated with the median though.)

I agree, of course, but the OP seemed to segue off into a question of finding the median in general, presumably also in cases where an obvious symmetry argument won't work anymore.

Gold Member
I agree, of course, but the OP seemed to segue off into a question of finding the median in general, presumably also in cases where an obvious symmetry argument won't work anymore.
so are we saying that there may be other values for the median the textbook answer gives ##1.5##
that is ##({1+2})/{2}##= ##1.5##
could this be a solution?

Last edited:
Gold Member
As a hint, do you know about percentiles in general, and maybe the median as percentile?
I am waiting for your method in using percentiles as you indicated.

Gold Member
since the coins are fair, this problem is equivalent to looking for the midpoint of Pascal's Triangle for n= 4. By symmetry you can eyeball it and see the midpoint at ##x = 2##

In fact any symmetric distribution will have its midpoint as a median.

(Footnotes: if the first moment exists, then we also have midpoint = mean for symmetric distribution; medians in general are not unique so there can be a range of values associated with the median though.)
I thought for symmetric distribution the values of the mean = mode = median. Is this statement correct?

Gold Member
I thought for symmetric distribution the values of the mean = mode = median. Is this statement correct?
No. See my post above that you quoted re: "Footnotes". Thinking like this will get you in trouble with e.g. the Cauchy distribution.

Also there is no reason for the mode to coincide with median. It simply is not true in general. For a basic counter example that comes up in randomwalks see: https://en.wikipedia.org/wiki/Arcsine_distribution

• Klystron
Gold Member
I am waiting for your method in using percentiles as you indicated.
Basically, the median is the 50-th percentile, so that half the data lies below it and the other half lies above it. The simplest example would be, for 1,2,3, 2 is the median.

Gold Member
Basically, the median is the 50-th percentile, so that half the data lies below it and the other half lies above it. The simplest example would be, for 1,2,3, 2 is the median.

To expand on this method the following excerpt from Wiki introduces more terms associated with percentile measures. Note how the author like @WWGD defines median as the 50th percentile:

----- wikipedia -----------
The term percentile and the related term percentile rank are often used in the reporting of scores from norm-referenced tests. For example, if a score is at the 86th percentile, where 86 is the percentile rank, it is equal to the value below which 86% of the observations may be found (carefully contrast with in the 86th percentile, which means the score is at or below the value below which 86% of the observations may be found - every score is in the 100th percentile). The 25th percentile is also known as the first quartile (Q1), the 50th percentile as the median or second quartile (Q2), and the 75th percentile as the third quartile (Q3). In general, percentiles and quartiles are specific types of quantiles.
--------- end excerpt from https://en.wikipedia.org/wiki/Percentile

• WWGD