# Problem on parabolic motion

• Lord_Biscotto

#### Lord_Biscotto

Homework Statement
An athlete throws the hammer at an angle of about 39.95 ° reaching the
distance of 86.74 m. The tool consists of a sphere weighing 7.26 kg and radius
0.06 cm and a chain and a handle for a total length of 1.195 m. The height from
from which the tool started was about 1.7 meters. The total turning radius is 1.95 m.
1. Calculate how fast the hammer was thrown
2. Calculate the angular speed of rotation of the athlete at the moment of the throw.
3. Calculate the centripetal force exerted by the athlete immediately before the release (assuming
a uniform circular motion and neglecting the force of gravity)
4. Write the trajectory equation and draw its graph. Calculate the coordinates of the
point of greatest height.
5. Assuming that once launched, the hammer rotates on itself at the angular speed of
0.2 rounds per second calculate the kinetic energy and potential energy at the point of maximum altitude.
Note: the moment of inertia of the hammer is 0.2 kg * m2
Relevant Equations
i dont really know hot to write equations on pc

Homework Statement:: An athlete throws the hammer at an angle of about 39.95 ° reaching the
distance of 86.74 m. The tool consists of a sphere weighing 7.26 kg and radius
0.06 cm and a chain and a handle for a total length of 1.195 m. The height from
from which the tool started was about 1.7 meters. The total turning radius is 1.95 m.
1. Calculate how fast the hammer was thrown
2. Calculate the angular speed of rotation of the athlete at the moment of the throw.
3. Calculate the centripetal force exerted by the athlete immediately before the release (assuming
a uniform circular motion and neglecting the force of gravity)
4. Write the trajectory equation and draw its graph. Calculate the coordinates of the
point of greatest height.
5. Assuming that once launched, the hammer rotates on itself at the angular speed of
0.2 rounds per second calculate the kinetic energy and potential energy at the point of maximum altitude.
Note: the moment of inertia of the hammer is 0.2 kg * m2
Relevant Equations:: i don't really know hot to write equations on pc

Welcome to PF.

To write equations you can look at the LateX Guide link below the Edit window. You can also insert Greek letters and square root signs using the Greek Alphabet available under the little Parthenon icon to the left of the Table icon.

Start by listing the Relevant Equations. Those would be the kinematic equations for motion under a constant acceleration field (like gravity in this case). There are kinematic equations for linear motion and for circular motion, and it looks like you will use both in this problem.

We need to see you start the work before we can offer tutorial help. That's in the PF rules.

a sphere weighing 7.26 kg and radius 0.06 cm
Very heavy material ? Or a typo ?
!​

##\ ##