the problem is fin the general solution of the differential eq :(adsbygoogle = window.adsbygoogle || []).push({});

y''+y=2sect + 3 (-pi/2 < t < pi/2)

using variation of parameters.

I just needed a check to make sure my answer was correct.

r^2+1 = 0

r= -i

r= i

y1= cost

y2= sint

g(t)= 2sect+ 3

y(t) = c1cost + c2sint + Y(t)

Y(t) = u1y1 + u2y2

u1 = -(integal) (y2*g(t))/W in which W = 1

= -(int) sint(2sect+ 3)

= -(int) sint(2/cost+3)

= -(2 (int) tant + 3 (int) sint)

is this correct, where do i go from here

u2= (integral) y1*g(t)/ W

= (int) cost(2sect + 3)/ W

= (int) (2*(cost/cost) + 3cost)

= (int) 2 + (int)3 cost

= 2+3(sint)

is this correct

and then I plug these back into the Y(t) eq and add this to y(t)?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Problem using variation of parameters

**Physics Forums | Science Articles, Homework Help, Discussion**