- #1

mkkrnfoo85

- 50

- 0

I am just having a problem understanding a problem in my textbook on nonunique solutions. Let me get to the problem:

So, consider the initial value problem:

[tex] y' = y^{1/3}\mbox{, } y(0) = y_0 = 0[/tex]

[tex]\mbox{for t}\geq 0[/tex]

So, solving for the differential equation, I get:

[tex]y = [\frac{2}{3}(t + C)]^{3/2}[/tex]

So, satisfying initial condition, [tex]0 = [\frac{2}{3}(0 + C)]^{3/2}[/tex]

So, [tex] C = 0[/tex]

[tex]y = [\frac{2}{3}(t)]^{3/2}[/tex]

, for [tex]t\geq 0[/tex]

So, that's all understandable to me.

But the answer in the book goes on to say that:

[tex]y = -[\frac{2}{3}(t)]^{3/2}[/tex]

, for [tex]t\geq 0[/tex]

is also a solution. And:

[tex] y = 0[/tex]

, for [tex]t\geq 0[/tex]

is also a solution. Finally, the answer says you can generalize the solultion to:

[tex]y = \chi (t) =\left\{\begin{array}{cc}0,&\mbox{ if }

0\leq t< t_0\\ \pm [\frac{2}{3}(t - t_0)]^{3/2}, & \mbox{ if } t\geq 0\end{array}\right[/tex]

This last part is very confusing for me. If someone could explain it, it would be very helpful. For example, if the value of [tex]t_0[/tex] was given, and it followed the generalization above, wouldn't values for [tex]0 \leq t < t_0[/tex] not be 0, but instead be undefined? Since, you can't do [tex](negative number)^{3/2}[/tex]

Right?

Thanks in advance for all the help.

-mk