Problem with Spherical Surface Integral

  • Thread starter Noone1982
  • Start date
  • #1
Noone1982
83
0
[tex]A\; =\; 4\dot{r}\; +\; 3\dot{\theta }\; -\; 2\dot{\phi }[/tex]

Now the surface integral integral is:

[tex]\int_{}^{}{\left( ?\times A \right)\; •\; da} [/tex]

(the ? mark is a del operator and the dot over a variable means a unit vector)

[tex]?\times A\; =\frac{\dot{r}}{r\sin \theta }\left[ \frac{\partial }{\partial \theta }\left( \sin \theta A_{\phi } \right)\; -\; \frac{\partial A_{\theta }}{\partial \phi } \right]\; +\; \frac{\dot{\theta }}{r}\left[ \frac{1}{\sin \theta }\frac{\partial A_{r}}{\partial \phi }\; -\; \frac{\partial }{\partial r}\left( rA_{\phi } \right) \right]\; +\; \frac{\dot{\phi }}{r}\left[ \frac{\partial }{\partial r}\left( rA_{\theta } \right)\; -\; \frac{\partial A_{r}}{\partial \theta } \right] [/tex]

I get:

[tex]?\times A\; =\frac{\dot{r}}{r\sin \theta }\left[ \left( -2\cos \theta \right)\; -\; 0 \right]\; +\; \frac{\dot{\theta }}{r}\left[ \frac{1}{\sin \theta }\left( 0 \right)\; +\; 2 \right]\; +\; \frac{\dot{\phi }}{r}\left[ 3\; -0 \right][/tex]

Now I dot this to da

where da is:

[tex]da\; =\; r^{2}\sin \theta \; d\theta \; d\phi \; \dot{r}\; +\; r\sin \theta \; dr\; d\phi \; \dot{\theta }\; +\; r\; dr\; d\theta \; \dot{\phi }[/tex]

I get:

[tex]\int_{}^{}{\int_{}^{}{}}-2\cos \theta r\; d\theta \; d\phi \; \; +\; \int_{}^{}{\int_{}^{}{}}2\sin \theta \; dr\; d\phi \; +\int_{0}^{ro}{\int_{\frac{\pi }{2}}^{\frac{\pi }{2}}{}}3\; dr\; d\theta \; [/tex]

which equals:

[tex]-2\sin \theta r\phi \; +\; 2\sin \theta r\phi \; +\; \frac{3}{2}\pi r_{o}\; =\; \frac{3}{2}\pi r_{o}[/tex]

The answer should be

[tex]-\pi r_{0}[/tex]
 

Answers and Replies

  • #2
StatusX
Homework Helper
2,571
2
You can't integrate over the spherical basis vectors because they change with position. You need to transform the vectors into cartesian coordinates.
 
  • #3
quantumdude
Staff Emeritus
Science Advisor
Gold Member
5,575
23
He doesn't need to change basis, he just messed up his LaTeX. There are supposed to be dot products among the basis vectors in there. So while [itex]\hat{r}[/itex] does depend on position, [itex]\hat{r}\cdot\hat{r}[/itex] does not.
 

Suggested for: Problem with Spherical Surface Integral

  • Last Post
Replies
5
Views
400
Replies
9
Views
494
Replies
14
Views
386
Replies
2
Views
356
Replies
9
Views
553
  • Last Post
Replies
16
Views
767
Replies
2
Views
405
  • Last Post
Replies
4
Views
450
Top