Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Problem with Spherical Surface Integral

  1. Oct 6, 2005 #1
    [tex]A\; =\; 4\dot{r}\; +\; 3\dot{\theta }\; -\; 2\dot{\phi }[/tex]

    Now the surface integral integral is:

    [tex]\int_{}^{}{\left( ?\times A \right)\; •\; da} [/tex]

    (the ? mark is a del operator and the dot over a variable means a unit vector)

    [tex]?\times A\; =\frac{\dot{r}}{r\sin \theta }\left[ \frac{\partial }{\partial \theta }\left( \sin \theta A_{\phi } \right)\; -\; \frac{\partial A_{\theta }}{\partial \phi } \right]\; +\; \frac{\dot{\theta }}{r}\left[ \frac{1}{\sin \theta }\frac{\partial A_{r}}{\partial \phi }\; -\; \frac{\partial }{\partial r}\left( rA_{\phi } \right) \right]\; +\; \frac{\dot{\phi }}{r}\left[ \frac{\partial }{\partial r}\left( rA_{\theta } \right)\; -\; \frac{\partial A_{r}}{\partial \theta } \right] [/tex]

    I get:

    [tex]?\times A\; =\frac{\dot{r}}{r\sin \theta }\left[ \left( -2\cos \theta \right)\; -\; 0 \right]\; +\; \frac{\dot{\theta }}{r}\left[ \frac{1}{\sin \theta }\left( 0 \right)\; +\; 2 \right]\; +\; \frac{\dot{\phi }}{r}\left[ 3\; -0 \right][/tex]

    Now I dot this to da

    where da is:

    [tex]da\; =\; r^{2}\sin \theta \; d\theta \; d\phi \; \dot{r}\; +\; r\sin \theta \; dr\; d\phi \; \dot{\theta }\; +\; r\; dr\; d\theta \; \dot{\phi }[/tex]

    I get:

    [tex]\int_{}^{}{\int_{}^{}{}}-2\cos \theta r\; d\theta \; d\phi \; \; +\; \int_{}^{}{\int_{}^{}{}}2\sin \theta \; dr\; d\phi \; +\int_{0}^{ro}{\int_{\frac{\pi }{2}}^{\frac{\pi }{2}}{}}3\; dr\; d\theta \; [/tex]

    which equals:

    [tex]-2\sin \theta r\phi \; +\; 2\sin \theta r\phi \; +\; \frac{3}{2}\pi r_{o}\; =\; \frac{3}{2}\pi r_{o}[/tex]

    The answer should be

    [tex]-\pi r_{0}[/tex]
     
  2. jcsd
  3. Oct 6, 2005 #2

    StatusX

    User Avatar
    Homework Helper

    You can't integrate over the spherical basis vectors because they change with position. You need to transform the vectors into cartesian coordinates.
     
  4. Oct 6, 2005 #3

    Tom Mattson

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    He doesn't need to change basis, he just messed up his LaTeX. There are supposed to be dot products among the basis vectors in there. So while [itex]\hat{r}[/itex] does depend on position, [itex]\hat{r}\cdot\hat{r}[/itex] does not.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook