I'm having alot of problems with tensors. Here is what the professor in class told us in the lecture notes(adsbygoogle = window.adsbygoogle || []).push({});

In three spacetime dimensions (two space plus one time) an antisymmetric Lorentz tensor

F[itex]^{\mu\nu}[/itex] = -F[itex]^{\nu\mu}[/itex] is equivalent to an axial Lorentz vector, F[itex]^{\mu\nu}[/itex] = e[itex]^{\mu\nu\lambda}[/itex]F[itex]_{\lambda}[/itex]. Consequently, in 3D

one can have a massive photon despite unbroken gauge invariance of the electromagnetic

field A[itex]_{\mu}[/itex]. Indeed, consider the following Lagrangian:

L = -(1/2)*F[itex]_{\lambda}[/itex]F[itex]^{\lambda}[/itex] + (m/2)*F[itex]_{\lambda}[/itex]A[itex]^{\lambda}[/itex] (6)

where

F[itex]_{\lambda}[/itex](x) = (1/2)*[itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex]F[itex]^{\mu\nu}[/itex] = [itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex][itex]\partial[/itex][itex]^{\mu}[/itex]A[itex]^{\nu}[/itex],

or in components, F[itex]_{0}[/itex] = -B, F1 = +E[itex]^{2}[/itex], F[itex]_{2}[/itex] = -E[itex]^{1}[/itex].

In 2+1 dimension, [itex]\epsilon[/itex][itex]^{\alpha\beta\gamma}[/itex][itex]\epsilon[/itex][itex]_{\alpha}[/itex][itex]^{\mu\nu}[/itex] = g[itex]^{\alpha\mu}[/itex]g[itex]^{\beta\nu}[/itex] - g[itex]^{\alpha\nu}[/itex]g[itex]^{\beta\mu}[/itex]

That last part above may be a typo because I've never seen an epsilon without all of its indices either upstairs or downstairs

I'm having trouble with two things

1. Using the last part above, does that mean that

[itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex][itex]\epsilon[/itex][itex]^{\lambda\mu\nu}[/itex] = g[itex]^{\lambda\mu}[/itex]g[itex]^{\mu\nu}[/itex] - g[itex]^{\lambda\nu}[/itex]g[itex]^{\mu\mu}[/itex] = g[itex]^{\lambda\mu}[/itex]g[itex]^{\mu\nu}[/itex] - g[itex]^{\lambda\nu}[/itex]?

If so, would that give [itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex][itex]\epsilon[/itex][itex]^{\lambda\mu\nu}[/itex][itex]\partial[/itex][itex]^{\mu}[/itex]A[itex]^{\nu}[/itex][itex]\partial[/itex][itex]_{\mu}[/itex]A[itex]_{\nu}[/itex] = [itex]\partial[/itex][itex]^{\mu}[/itex]A[itex]^{\nu}[/itex][itex]\partial[/itex][itex]^{\nu}[/itex]A[itex]^{\mu}[/itex] - [itex]\partial[/itex][itex]^{\mu}[/itex]A[itex]^{\nu}[/itex][itex]\partial[/itex][itex]_{\mu}[/itex]A[itex]^{\lambda}[/itex] ?

2. But when I tried to write out the Lagrangian, I got

L = -(1/2)[itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex][itex]\partial[/itex][itex]^{\mu}[/itex]A[itex]^{\nu}[/itex][itex]\partial[/itex][itex]_{\mu}[/itex]A[itex]_{\nu}[/itex] + (m/2)[itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex][itex]\partial[/itex][itex]^{\mu}[/itex]A[itex]^{\nu}[/itex]A[itex]^{\lambda}[/itex]

so

[itex]\frac{\partial L}{\partial A^{\lambda}}[/itex] = (m/2)[itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex] [itex]\partial[/itex][itex]^{\mu}[/itex]A[itex]^{\nu}[/itex]

and

[itex]\frac{\partial L}{\partial (\partial_{\mu}A_{\nu}) }[/itex] = -[itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex][itex]\epsilon[/itex][itex]^{\lambda\mu\nu}[/itex][itex]\partial[/itex][itex]^{\mu}[/itex]A[itex]^{\nu}[/itex] + (m/2)[itex]\epsilon[/itex][itex]_{\lambda\mu\nu}[/itex]g[itex]^{\mu\nu}[/itex]A[itex]^{\lambda}[/itex]

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Problem with tensors

Loading...

Similar Threads - Problem tensors | Date |
---|---|

Contracting Einstein Tensor in 4d works, have problem in 5d | Oct 8, 2015 |

Tensor calculus problem | Mar 11, 2015 |

Where should I ask about mathematical problems with Riemann curvature tensor | Nov 14, 2014 |

There may be some problems with dimensional analysis within the stress energy momentum tensor | Oct 2, 2014 |

Problem with tensor equation in Cartan formalism | Sep 8, 2014 |

**Physics Forums - The Fusion of Science and Community**