• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Product rule

Can the product rule be applied if one of the functions is not differentiable? For example,
f(x)={g(x)sin(1/x), x not =0
=0, x=0
where g(0)=g'(0)=0.
f'(0)=g'(0)sin(1/0) + g(0)dsin(1/x)/dx
=0sin1/0+0dsin(1/x)/dx=0?
applying the limit definition, I get
f'(0)=g'(0)lim sin(1/h) where h-->0
is this zero?
 
It turns out that in order to find f'(0) I had to go back to the e-d definition of limit. Anyone see an easier way?
 

NateTG

Science Advisor
Homework Helper
2,449
5
The limit you're describing does not exist.a

Product rule:
f(x)g(x)=f'(x)g(x)+f(x)g'(x)

You need derivatives of both.

Now we have
g(x)sin(1/x)

the derivative of sin(1/x) is
x-2cos(1/x)
and not defined at zero (no limit at zero either)
you'd need g(x) to grow at better than x2 to have a potential derivative there.
 
Originally posted by NateTG
The limit you're describing does not exist.a
Hi NateTG, I have found the limit. See attached.
I had to go back to epsilons and deltas. I was wondering if anyone knows an easier way to find the derivative.
 

Attachments

Related Threads for: Product rule

Replies
5
Views
1K
  • Posted
Replies
8
Views
999
Replies
25
Views
2K
Replies
3
Views
1K
Replies
6
Views
687
Replies
2
Views
430
  • Posted
Replies
19
Views
6K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top