(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A ball is kicked with initial speed 20 m/s and initial angle 40 degrees up an incline of angle 15 degrees. Assume that the ball leaves the ground a the base of the incline at [tex]x_{0}[/tex]=0 and [tex]y_{0}[/tex]=0. How far up the incline does the ball initially land (not how far horizontally or vertically but how far along the incline)?

2. Relevant equations

Range: [tex]R=(v^{2}_{0}/g)sin2\Theta_{0}[/tex]

y-[tex]y_{0}=(tan(\Theta_{0})(x-x_{0})-g(x-x_{0})^{2}/2(v_{0}cos\Theta_{0})^{2}[/tex]

3. The attempt at a solution

Well what I tried was subtracting 15 from 40 and came up with 25 plugged it into the Range formula and went from got 31.3m. I think I am missing the the 15 degree incline and was wandering if I just multiplied the range by cos(15)?

I also thought that finding the slope of the 15 degree line then setting it equal to the trajectory formula I could find the point of intersection and do some trig from there. In order to do that I would have to find the slope of the line. I was wandering if [sin(15)/cos(15)]x would be the slope of the 15 degree incline?

Not sure which method works the first one seems like it could work but I was wondering if gravity changes when the angles are subtracted and if multipling by cos(15) is needed to make up for the incline?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Projectile Motion

**Physics Forums | Science Articles, Homework Help, Discussion**