1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Projecting an abstract state onto position/momentum/energy spaces

  1. Mar 21, 2007 #1
    1. The problem statement, all variables and given/known data
    Consider the quantum harmonic oscillator in the state [tex]| \psi (t) \rangle = \frac{1}{\sqrt{14}}\left( 3 | 0 \rangle \exp{\left( -\frac{1}{2}i \omega t\right)} + 2 | 1 \rangle \exp{\left( -\frac{3}{2}i \omega t\right)} + | 5 \rangle \exp{\left( -\frac{11}{2}i \omega t\right)} \right)[/tex]. What is [tex]| \psi (t) \rangle[/tex] in terms of the [tex]\psi_n (x)[/tex], [tex]\psi_n (p)[/tex] and [tex]\psi_n (E)[/tex]. Do not evaluate the specific basis vectors.

    2. Relevant equations
    [tex]\Phi (p) = \frac{1}{\sqrt{h}}\int_{-\infty}^{\infty} \psi (x) \exp{\left( \frac{-ipx}{\hbar} \right)} \; dx[/tex]

    3. The attempt at a solution
    I think expansion along the energy space is unnecessary, since the original kets are themselves eigenkets of the Hamiltonian. As for position space, is the Fourier transform [tex]\Psi(x) = \frac{1}{\sqrt{h}} \int_{\infty}^{\infty} | \psi(t) \rangle \exp{\left( \frac{i \omega x}{\hbar}\right)} \; d\omega = \langle \phi | \psi(t) \rangle[/tex], where [tex]| \phi \rangle = \exp{\left( \frac{-i \omega x}{\hbar}\right)}[/tex]?

    EDIT: Since only projection onto the position-space and momentum-space bases is necessary, would it be prudent to multiply the vector
    \left[ \begin{array}{c} 3\\
    by the matrix representations of the position and momentum operators respectively?
    Last edited: Mar 21, 2007
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted