I'm having a little trouble seeing something Harris says in his intro book on alg. geom. Say X is contained in P^n. Harris says that X is a projective variety iff X intersect U_i is an affine variety for each i=0,...,n, where U_i are the points [Z_0 , Z_1 , ... , Z_n] in P^n with Z_i =/ 0. I'm a little confused about how he claims this:(adsbygoogle = window.adsbygoogle || []).push({});

If X is a projective variety, say its the locus of the homogeneous polynomials F_α(Z_0, ..., Z_n). Say we define on A^n the polynomials f_α(z_1, ..., z_n) = F_α(1,z_1, ...,z_n) = F_α(Z_0, ..., Z_n) / Z^{d}_0 where d is the degree of F_α and z_i are the local coords (z_i = Z_i/Z_0). Then he claims the zero locus of the f_α is X intersect U_0. Now since there's a bijection between U_0 and A^n, are we just identifying X intersect U_0 with its image via the local coordinates, meaning its an affine variety too?

For the other direction, I don't really see this. If for example X intersect U_0 is an affine variety, say its the locus of f_α(z_1, ..., z_n),then we can define homogeneous polynomials F_α(Z_0, ... Z_n) = Z^{d}_0 f_α(Z_1/Z_0,..., Z_n/Z_0) where d = deg(f_α). But then is the zero locus of the F_α just X?

Any help would be appreciated!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Projective and Affine varieties

**Physics Forums | Science Articles, Homework Help, Discussion**