(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Consider the sets below. For each one, decide whether the set is bounded above. If it is, give the supremum in ##\mathbb{R}##. Then decide whether or not the set is bounded below. If it is, give the infimum. Finally, decide whether or not the supremum is a maximum, and whether to not the infimum is a minimum.

c) the natural numbers ##\mathbb{N}##

2. Relevant equations

In my class ##\mathbb{N} = {0, 1, 2, ... }##

3. The attempt at a solution

Proof: ##\mathbb{N}## is not bounded above. We will show this with a contradiction. Suppose M is an upper bound on ##\mathbb{N}##. Then (##\lceil M \rceil + 1) \space \epsilon \space \mathbb{N}## and ##\lceil M \rceil + 1 > M##, a contradiction. Therefore ##\mathbb{N}## does not have an upper bound and is not bounded above.

We will now show ##\mathbb{N}## is bounded below. Let ##U = 0## and let ##x \space \epsilon \space \mathbb{N}##. Then ##U = 0 \le x##. Therefore ##0## is a lower bound on ##\mathbb{N}##.

In order to show inf##\mathbb{N} = 0## we must show 0 is the greatest lower bound. We proceed by contradiction. Suppose ##m## is a lower bound on ##\mathbb{N}## such that ##m > 0##. But ##0 \space \epsilon \space \mathbb{N}## so m is not a lower bound, a contradiction. We conclude that there does not exist a lower bound ##m## such that ##m > 0## and so inf##\mathbb{N} = 0##.

In order to show min##\mathbb{N} = 0##. we must show 0 is a lower bound on ##\mathbb{N}## and ##0 \space \epsilon \space \mathbb{N}##. We've already shown 0 is a lower bound on ##\mathbb{N}## and ##0 \space \epsilon \space \mathbb{N}## is a true statement. Therefore min##\mathbb{N} = 0##. []

My question: Is this proof clear and easy to follow?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Proof about bounds

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**