- #1

- 4

- 0

## Main Question or Discussion Point

Hello,

i'm trying to prove this statements, but i'm stuck.

Be ##V=R^n## furnished with the standard inner product and the standard basis S.

And let W ##\subseteq## V be a subspace of V and let ##W^\bot## be the orthogonal complement.

a) Show that there is exactly one linear map ##\Phi:V \rightarrow V## with ##\Phi|_w=id_w## and with ##\Phi|_{w^\bot}=-id_{w^\bot}##

b) Show that V have an orthonormal basis B consisting of the eigenvectors of ##\Phi## and indicate ##D_{BB}(\Phi##

c) Show that ##D_{BS}(id_v)## and ##D_{SS}(\Phi)## are orthogonal matrices.

For a) i have the following incomplete derivation:

Be ##a_1##...##a_n## an orthonormal basis of W and be ##b_1##...##b_n## an orthonormal basis of ##W^\bot##.

Therefore ##\Phi## is defined as ##\Phi: a_i \mapsto a_i, b_i \mapsto -b_j## with 1##\le##i##\le##n and 1##\le##j##\le##n. We can see that ##a_i## and ##b_i## are eigenvectors of ##\Phi##.

And now i'm stuck. I'm sure, i saw somewhere an prove with this derivation. But i dont remember. Is this even a good starting point or a dead end?

Well, i'm not very good at mathematical prooves.

But maybe someone can help me with the next step or someone have an other idea to proove this.

Thanks in advance.

i'm trying to prove this statements, but i'm stuck.

Be ##V=R^n## furnished with the standard inner product and the standard basis S.

And let W ##\subseteq## V be a subspace of V and let ##W^\bot## be the orthogonal complement.

a) Show that there is exactly one linear map ##\Phi:V \rightarrow V## with ##\Phi|_w=id_w## and with ##\Phi|_{w^\bot}=-id_{w^\bot}##

b) Show that V have an orthonormal basis B consisting of the eigenvectors of ##\Phi## and indicate ##D_{BB}(\Phi##

c) Show that ##D_{BS}(id_v)## and ##D_{SS}(\Phi)## are orthogonal matrices.

For a) i have the following incomplete derivation:

Be ##a_1##...##a_n## an orthonormal basis of W and be ##b_1##...##b_n## an orthonormal basis of ##W^\bot##.

Therefore ##\Phi## is defined as ##\Phi: a_i \mapsto a_i, b_i \mapsto -b_j## with 1##\le##i##\le##n and 1##\le##j##\le##n. We can see that ##a_i## and ##b_i## are eigenvectors of ##\Phi##.

And now i'm stuck. I'm sure, i saw somewhere an prove with this derivation. But i dont remember. Is this even a good starting point or a dead end?

Well, i'm not very good at mathematical prooves.

But maybe someone can help me with the next step or someone have an other idea to proove this.

Thanks in advance.