hello, I need the proof to show that:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

e^x = \lim_{n\rightarrow\infty} (1+x/n)^n

[/tex]

Here's what I was able to come up with so far:

since the derivative of [tex]e^x[/tex] is also [tex]e^x[/tex],

then let f(x) = [tex]e^x[/tex]

thus:

D(f(x)) = [tex]\lim_{n\rightarrow\infty} \frac{f(x+h) - f(x)}{h} = \lim_{n\rightarrow\infty} \frac{e^{x+h} - e^x}{h} = e^x\lim_{n\rightarrow\infty} \frac{e^h - 1}{h}[/tex]

so for the derivative of [tex]e^x[/tex] to equal itself,

[tex]\lim_{n\rightarrow\infty} \frac{e^h - 1}{h} = 1[/tex]

so for small values of h, we can write:

[tex]e^h - 1 = h[/tex]

and so

[tex] e = (1+h)^{1/h}[/tex]

Replacing h by 1/n, we get:

[tex] e = (1 + 1/n)^n[/tex]

As n gets larger and approaches infinity, we get:

[tex]e = \lim_{n\rightarrow\infty} (1+1/n)^n[/tex]

so, how do I get:

[tex]

e^x = \lim_{n\rightarrow\infty} (1+x/n)^n

[/tex]

Also, is it true that:

[tex](1+x/n)^n \leq e^x[/tex] and

[tex](1-x/n)^n \leq e^{-x}[/tex] for every natural n and every x element of X?

How can I prove this?

thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Proof for exponentials

**Physics Forums | Science Articles, Homework Help, Discussion**