Let T be a linear transformation from V to V. Prove that T^2 = T0 (with T0 the zero mapping) IFF R(T) C N(T). ( "is contained in" = 'C'. )(adsbygoogle = window.adsbygoogle || []).push({});

Comments:

It seems clear that T is also the zero transformation. IF this is wrong can someone give me a counterexample. If it is true, then R(T) = { 0 } and N(T) = {v | v in V}, and clearly R(T) C N(T). That would show half, and if this part is right, then I can finish the second half. But is my reasoning for this part correct?--it almost seems too easy.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proof help

**Physics Forums | Science Articles, Homework Help, Discussion**