- #1
- 19
- 0
Let:
1) P be one place operation
2) H be two place operation
3) G be two place predicate
4) k, m be two constants
Let :
The following assumptions :
1) [itex]\forall x [\neg G(x,k)\Longrightarrow G[H(P(x),x),m]][/itex]
2)[itex]\forall x\forall y\forall z[G(x,y)\Longrightarrow G[H(z,x),H(z,y)]][/itex]
3)[itex]\forall x\forall y\forall z [G(x,y)\wedge G(y,z)\Longrightarrow G(x,z)][/itex]
4)[itex]\forall x\forall y [G(x,y)\Longrightarrow G(y,x)][/itex]
5)[itex]\forall x\forall y [G[H(x,y),H(y,x)]][/itex]
6)[itex]\forall x[ G[H(x,m),m]][/itex]
Then formally prove that:
Then formally prove : [itex]\forall x\forall y\forall z[\neg G(x,k)\Longrightarrow(G[H(x,y),H(x,z)]\Longrightarrow G(y,z))][/itex]
1) P be one place operation
2) H be two place operation
3) G be two place predicate
4) k, m be two constants
Let :
The following assumptions :
1) [itex]\forall x [\neg G(x,k)\Longrightarrow G[H(P(x),x),m]][/itex]
2)[itex]\forall x\forall y\forall z[G(x,y)\Longrightarrow G[H(z,x),H(z,y)]][/itex]
3)[itex]\forall x\forall y\forall z [G(x,y)\wedge G(y,z)\Longrightarrow G(x,z)][/itex]
4)[itex]\forall x\forall y [G(x,y)\Longrightarrow G(y,x)][/itex]
5)[itex]\forall x\forall y [G[H(x,y),H(y,x)]][/itex]
6)[itex]\forall x[ G[H(x,m),m]][/itex]
Then formally prove that:
Then formally prove : [itex]\forall x\forall y\forall z[\neg G(x,k)\Longrightarrow(G[H(x,y),H(x,z)]\Longrightarrow G(y,z))][/itex]