Let:(adsbygoogle = window.adsbygoogle || []).push({});

1)P be one place operation

2)K be one place operation

3) c be a constant

let :

1) G be a two place predicate

2) H be a two place predicate

Let :

The following axioms or assumptions)

1)for all A { H(A,c)v H(c,A)v G(A,c)}

2)for all A { H(A,c)=> G[P(A),A]}

3)for all A {H(c,A) => G[P(A),K(A)]}

4)for all A {G[K(A),c] => G(A,c)}.

5)for all A,B,C { [G(A,B) and G(A,C)]=> G(B,C)}

Then formally prove :

for all A {G[P(A),c] => G(A,c)}

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proof in predicate calculus

**Physics Forums | Science Articles, Homework Help, Discussion**