Prove the following:(adsbygoogle = window.adsbygoogle || []).push({});

If [tex] f : A \rightarrow B [/tex] and [tex] g : C \rightarrow D [/tex], then [tex] f \cap g : A \cap C \rightarrow B \cap D[/tex].

Here's my thoughts/attempt:

Proof:

Let A, B, C, and D be sets. Assume [tex] f : A \rightarrow B [/tex] and [tex] g : C \rightarrow D [/tex]. Let [tex] a \in A [/tex]. Since f is a function from A to B, there is some [tex] y \in B [/tex] such that [tex] (a, y) \in f [/tex]. Let [tex] b \in B [/tex] be such an element, that is, let [tex] b \in B [/tex] such that [tex] (a,b) \in f [/tex]. Let [tex] c \in C [/tex]. Since g is a function from C to D, there is some [tex] z \in D [/tex] such that [tex] (c, z) \in g [/tex]. Let [tex] d \in D [/tex] be such an element, that is, let [tex] d \in D [/tex] such that [tex] (c,d) \in g [/tex].

This is all I have so far.

Would I have to break it into cases where [tex] a = c [/tex] and [tex] a \not= c [/tex]? If [tex] a = c [/tex], [tex] A \cap C [/tex] contains an element, but if [tex] a \not= c [/tex], [tex] A \cap C [/tex] is empty since a and c were arbitrary. The same argument holds for [tex] B \cap D [/tex]. So, taking these things into account, [tex] f \cap g [/tex] is either a function from the set containing a to the set containing b, or its a function from the empty set to the empty set.

Does this make any sense, is it necessary, and how should I write it in my proof?

Thanks in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proof involving functions

**Physics Forums | Science Articles, Homework Help, Discussion**