(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Prove that

[tex]\frac{1-h}{2}<\sum_{k=1}^{n}x_{2k}(x_{2k+1}-x_{2k-1})<\frac{1+h}{2}[/tex]

where [tex]0=x_1<x_2<\cdots<x_{2n+1}=1[/tex] such that [tex]x_{k+1}-x_{k}<h[/tex] for [tex]1\le k\le 2n[/tex]

2. Relevant equations

How to prove? :-)

3. The attempt at a solution

I need to prove

[tex]\left|-1+2\sum_{k=1}^{n}x_{2k}(x_{2k+1}-x_{2k-1})\right|<h[/tex]

[tex]\left|-1+2\sum_{k=1}^{n}x_{2k}(x_{2k+1}-x_{2k-1})\right|=\left|-1+2\sum_{k=1}^{n}x_{2k}(x_{2k+1}-x_{2k}+x_{2k}-x_{2k-1})\right|\le\left|-1+4h\sum_{k=1}^{n}x_{2k}\right|[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Proof of an inequality

**Physics Forums | Science Articles, Homework Help, Discussion**