1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Proof of Convergent Sequence

  1. Feb 11, 2010 #1
    1. The problem statement, all variables and given/known data

    If [tex]a_{1}[/tex] = 1 and [tex]a_{n+1}[/tex] = (1-(1/[tex]2^{n}[/tex])) [tex]a_{n}[/tex], prove that [tex]a_{n}[/tex] converges.

    2. Relevant equations

    3. The attempt at a solution
    I am confident about my attempt, I just want it checked. Thanks.

    First show that [tex]a_{n}[/tex] is monotone: [tex]a_{n}[/tex] = {1, 1/4, 21/32, 315/512,...}

    Claim: [tex]a_{n+1}[/tex] [tex]\leq[/tex] [tex]a_{n}[/tex] for all n [tex]\in[/tex] N. (Must show this)


    [tex]a_{n+1}[/tex] [tex]\leq[/tex] [tex]a_{n}[/tex]

    [tex]\Leftrightarrow[/tex] (1-(1/[tex]2^{n}[/tex])) [tex]a_{n}[/tex] [tex]\leq[/tex] [tex]a_{n}[/tex]

    [tex]\Leftrightarrow[/tex] [tex]a_{n}[/tex] - ([tex]a_{n}[/tex] / [tex]2^{n}[/tex]) [tex]\leq[/tex] [tex]a_{n}[/tex]

    [tex]\Leftrightarrow[/tex] [tex]2^{n}[/tex] [tex]a_{n}[/tex] - [tex]a_{n}[/tex] [tex]\leq[/tex] [tex]2^{n}[/tex] [tex]a_{n}[/tex]

    [tex]\Leftrightarrow[/tex] [tex]2^{n}[/tex] [tex]a_{n}[/tex] - [tex]2^{n}[/tex] [tex]a_{n}[/tex] [tex]\leq[/tex] [tex]a_{n}[/tex]

    [tex]\Leftrightarrow[/tex] 0 [tex]\leq[/tex] [tex]a_{n}[/tex]

    So we can conclude that [tex]a_{n+1}[/tex] [tex]\leq[/tex] [tex]a_{n}[/tex] as long as [tex]a_{n}[/tex] [tex]\geq[/tex] 0. Now [tex]a_{1}[/tex] = 1, so the sequence starts with a number greater than or equal to zero. Every other number in the sequence has the form:

    x(1-(1/[tex]2^{x}[/tex])) for x greater than zero.

    We claim every such number is greater than or equal to zero, and will show this by induction.

    Induction Step: Assume [tex]a_{n}[/tex] [tex]\geq[/tex] 0

    [tex]a_{n+1}[/tex] = [tex]a_{n}[/tex] (1-(1/[tex]2^{n}[/tex])) [tex]\geq[/tex] 0(1-(1/2)) = 0

    This implies [tex]a_{n+1}[/tex] [tex]\geq[/tex] [tex]a_{n}[/tex], so since [tex]a_{n}[/tex] [tex]\geq[/tex] 0 for all n [tex]\in[/tex] N, this implies that [tex]a_{n}[/tex] is bounded and monotonic. So by the Monotone Sequence Theorem, [tex]a_{n}[/tex] converges for all n [tex]\in[/tex] N ■
  2. jcsd
  3. Feb 11, 2010 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Your proof looks reasonable.

    You misstated the conclusion though -- For each n, an is a number so it doesn't make sense to say "an converges for all n". What you meant is that the sequence an converges.
  4. Feb 11, 2010 #3
    ah yes, thanks for the tip.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook