- #1

- 1

- 0

## Homework Statement

http://staff.washington.edu/dhlee528/003.JPG [Broken]

## Homework Equations

x = r sin ( phi) cos ( theta)

y = r sin ( phi )sin (theta)

z = r cos ( phi )

## The Attempt at a Solution

[tex]

vol=8 \int_0^\frac{\pi}{2}\int_0^\frac{\pi}{2}\int_0^r \rho^2 \sin(\phi)d\rho d\theta d\phi

[/tex]

[tex]

8 \int_0^\frac{\pi}{2}\int_0^\frac{\pi}{2} \sin(\phi)(\frac{\rho^3}{3}){|}_0^r d\theta d\phi

[/tex]

[tex]

\frac{4r^3 \pi}{3}\int_0^\frac{\pi}{2}sin(\phi)d\phi

[/tex]

[tex]

-\frac{4r^3\pi}{3}[0-1]=\frac{4\pi r^3}{3}

[/tex]

I think I got spherical coordinate right but don't know how to do for rectangular or spherical coordinate

Last edited by a moderator: