Proof subset?

  • Thread starter leilei
  • Start date
Proof subset????

Given three sets A, B, and C, set X = (A-B) U (B-C) U (C-A) and
Y = (A∩B∩C) complement C. Prove that X is subset of Y. Is Y necessarily a subset of X? If yes, prove it. If no, why???
---When I draw the two venn diagrams X and Y, they are the same, but I don't know how to prove it...

Can someone help me out here...
Thanks in advance!
 

CompuChip

Science Advisor
Homework Helper
4,284
47
The usual proof for such a statement is: Let x be an element from X and try to prove that it is also an element of Y. So if x is in X, you know that it is in A but not in B, and/or it is in B but not in C, and/or it is in C but not in A. You want to show that it must be in (A∩B∩C)C. If it is in (A∩B∩C) then it would be in A and B and C, so it being in the complement means it is at least not in A or not in B or not in C. So you could suppose it is both in A and B and show that it cannot be in C.

So let me write this out in the right order:
Let [itex]x \in X[/itex]. Suppose that [itex]x \in A, x \in B[/itex]. Then definitely, [itex]x \not\in A - B, x \not\in C - A[/itex], because if it is in A it cannot be in any set from which we remove all elements of A (and similarly for B). But it must be in one or more of (A-B), (B-C) and (C-A), so it must be in (B - C). That is, x is in B (which we knew) but not in C. So if x is not in C, it cannot be in the intersection of C with whatever set you make up. In particular, it is not in [itex]A \cap B \cap C[/itex]. Therefore, it must be in the complement of that set, which is called Y.

Now try to do the same reasoning for [itex]Y \subset X[/itex]. You have already shown by your Venn diagram that if x lies in Y, it must lie in X. So try to prove it in the same way as I just did.
 
Thanks alot !!!!!
 

HallsofIvy

Science Advisor
Homework Helper
41,681
864
There is, however, a technical problem with "Let [itex]x \in X[/itex]"- the proof collapses is X is empty. Far better to start "IF [itex]x \in X[/itex]". That way, if X is empty, the hypothesis is false and the theorem is trivially true.
 

CompuChip

Science Advisor
Homework Helper
4,284
47
You are right, obviously the empty set is a subset of any set S (vacuously, all its elements are also in S).
 

Related Threads for: Proof subset?

  • Posted
Replies
2
Views
2K
  • Posted
Replies
3
Views
6K
  • Posted
Replies
5
Views
2K
  • Posted
3 4 5
Replies
102
Views
13K
  • Posted
Replies
3
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top