Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

"Properly speaking, in 1+1 dim. no such thing as spin, but"

  1. Jan 11, 2015 #1
    Could you please put the conclusion ("The spin-statistics theorem says that in local quantum field theory in two dimensions an anticommuting field must have half-integral Lorentz quantum numbers.") of the following quote in simpler terms if possible,

    "Properly speaking, in 1+1 dimensions there is no such thing as spin, but there is a two-dimensional Lorentz group (or local Lorentz group, in the case of a generally covariant theory), and it makes sense to ask how a two-dimensional field transforms under this group. The spin-statistics theorem says that in local quantum field theory in two dimensions an anticommuting field must have half-integral Lorentz quantum numbers."

    Quote from Google book search "is there a spin statistics theorem in 1 + 1 spacetime dimensions"

    Bottom of page 187, https://books.google.com/books?id=_18hAwAAQBAJ&pg=PA187&dq=string theory: volume 1, introduction&hl=en&sa=X&ei=dr-yVOTQO8rasAStkIGQBg&ved=0CCwQ6AEwAw#v=onepage&q=string theory: volume 1, introduction&f=false

    Also does this answer my early question about what the 2 component spinor solutions of the Dirac equation in 1+1 dimensions represent?

    Thanks for any help!
     
  2. jcsd
  3. Jan 16, 2015 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook