Properties of Line Integral

  • #1
375
28
TL;DR Summary
Let f (x, y) and g(x, y) be continuously differentiable real-valued functions in a region R.
Show that ##\displaystyle\oint_C f\nabla g \cdot dr = -\displaystyle\oint_C g\nabla f \cdot dr## for any closed curve in R
I don't have any idea to answer this question. So, any math help will be accepted.
I know ##\nabla fg = f\nabla g + g\nabla f \rightarrow (1) ## But I don't understand to how to use (1) here?
 
Last edited:
  • #2
What will ## \displaystyle\oint_C \vec \nabla (fg) \cdot d \vec r ## become?
 
  • Like
Likes WMDhamnekar and Delta2
  • #3
What will ## \displaystyle\oint_C \vec \nabla (fg) \cdot d \vec r ## become?
I think ## \displaystyle\oint_C \nabla (fg) \cdot dr = \displaystyle\oint_C f\nabla g \cdot dr + \displaystyle\oint_C g\nabla f \cdot dr ## for any closed curve.

But, for any closed curve in R , ##\displaystyle\oint_C \nabla (fg) \cdot dr = 0,##


Hence, we can deduce that ##\displaystyle\oint_C f\nabla g \cdot dr = -\displaystyle\oint_C g\nabla f \cdot dr ##
Is that logic correct?
 
  • Like
Likes Delta2 and malawi_glenn
  • #4
I think ∮C∇(fg)⋅dr=∮Cf∇g⋅dr+∮Cg∇f⋅dr for any closed curve.
This is valid for all lines.
 
  • Like
  • Informative
Likes WMDhamnekar and Delta2

Suggested for: Properties of Line Integral

Replies
38
Views
2K
Replies
5
Views
1K
Replies
8
Views
1K
Replies
14
Views
1K
Replies
1
Views
935
Replies
12
Views
290
Replies
3
Views
675
Back
Top