# Proton-proton fusion?

1. Aug 18, 2008

### Artlav

I've been thinking about nuclear fusion process in the sun, and stumbled upon something weird:

Basically, why there is a net energy from PP fusion?

We have an input of 4 protons and output of 2 protons and 2 neutrons, now, a mass of a neutron is slightly larger than a mass of proton, so the result appears to be more massive, than the input!

Some online research shown that it doesn't go just that simple, but the PP-chain process have the same problem - the input is 6 protons, the output is 2 neutrons and 4 protons, which is again more massive than the input, and above that there are 2 positrons, neutrinos and gamma-quants of net output.

Where does the energy come from?
Kinetic energy of proton collisions?
If yes, what is the point of fusion, if it only reemit parts of the heat that make it go in the first place?

Something does not add up, where am i wrong?

2. Aug 18, 2008

### malawi_glenn

I thought one ended up with a He4 nucleus, and not 2p + 2n ;-)

And the mass of He4 is smaller than mass(2p + 2n)

3. Aug 18, 2008

### Artlav

Hm, and He4 nucleus is made out of 2p and 2n, which raises the question, why is it lighter?
Are there different protons and neutrons in the atoms, than in hydrogen and free-flying neutrons?

4. Aug 18, 2008

### malawi_glenn

This is basic nuclear physics, the mass of the nucleus has lower mass than its constituent particles due to the (negative)binding energy. Same holds for atoms aswell, an atomic nucleus + electrons has higher mass then the atom as a whole.

http://en.wikipedia.org/wiki/Binding_energy

http://hyperphysics.phy-astr.gsu.edu/Hbase/astro/procyc.html

http://en.wikipedia.org/wiki/Nuclear_fusion

http://hyperphysics.phy-astr.gsu.edu/hbase/NucEne/fission.html

5. Aug 18, 2008

### Artlav

Thank you for the links, that made some sense although somewhat counter-intuitive at first - energy having "negative mass"...

6. Aug 18, 2008

### stevebd1

While it takes energy to turn a proton into a neutron, there's also energy created when the positron produced from the beta decay of the proton as it turns into a neutron reacts with an electron creating an additional 1.022 MeV of energy. So while you have energy 'left over' when the constituent particles bind to create a larger particle, there's also a little extra from the electron-positron reaction.

http://en.wikipedia.org/wiki/Proton-proton_chain

7. Jul 1, 2009

### jmgood

Hey,

I'm sorry, could someone please help me to understand the conservation of charge and leptons that happens in the first step of Proton-Proton fusion?

H(1) + H(1) --> H(2) + positron + neutrino.

I think I'm missing something to do with an electron? My nucleons balance, but I'm a charge positive and a lepton short on the right hand side of the relation.

thanks.

Last edited: Jul 1, 2009
8. Jul 2, 2009

### mathman

Charges balance: on left +1 from each H1, on right +1 each from H2 and positron
Lepton balance: positron is antilepton, neutrino is lepton - balance =0.

9. Jul 2, 2009

### jmgood

So to clarify, we're assuming the atoms are not neutral. Thank you!

10. Jul 3, 2009

### ideasrule

We're not assuming that; we're just ignoring the electrons because they don't take part in the nuclear reaction we're discussing. If you include them, they'd be on both the left and right sides, so charge still balances.

However, it is actually true that the electrons in the Sun's core are not bound to nuclei. The temperature there is way too high for that.

11. Jul 3, 2009

### jmgood

Okay, I see that. Except that if we did include them, we'd get a photon on the right because there would be a free electron and the positron. Yes? This was the original source of my confusion.

12. Jul 3, 2009

### qraal

It's a little appreciated fact but most of the Sun's energy is not from proton-proton fusion at all. That's the underlying source reaction of all the big energy producers, so it's vital, but the Sun's energy is mostly from making He4 out of D, He3 & T. Easy to overlook, but worth remembering.