- #1

- 191

- 0

## Homework Statement

Prove by induction

1^2 + 2^2 + ... + (n-1)^2 < (n^3)/3

(This is the problem on page 33 of Apostol's book)

## Homework Equations

## The Attempt at a Solution

A(k) = 1^2 + 2^2 + ... + (k-1)^2 < (k^3)/3

A(k+1) = 1^2 + 2^2 + ... + k^2 < (k+1)^3/3

Start with A(k) and add k^2 to both sides. This gives the inequality

1^2 + 2^2 + ... + k^2 < (k^3)/3 + k^2

To obtain A(k+1) as a consequence of this, it suffices to show that

k^3/3 + k^2 < (k+1)^3 /3

Now (k+1)^3 /3 = k^3/3 + k^2 +k +1/3 which is greater than k^3/3 + k^2

Which proves the inequality. However I dont understand why does

k^3/3 + k^2 < (k+1)^3 /3 suffice to prove the inequality

Can anyone explain in detail why does that inequality proves it?