(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let [itex][a,b][/itex] be a closed, bounded interval of real numbers and consider [itex]L^{\infty}[a,b][/itex]. Let [itex]X[/itex] be the subspace of [itex]L^{\infty}[a,b][/itex] comprising those equivalence classes that contain a continuous function. Show that such an equivalence class contains exactly one continuous function; and thus, [itex]X[/itex] is linearly isomorphic to [itex]C[a,b][/itex]. Show that [itex]C[a,b][/itex] is a closed subspace of the Banach space [itex]L^{\infty}[a,b][/itex].

2. Relevant equations

N/A

3. The attempt at a solution

I have already showed that each equivalence class contains exactly one continuous function. To prove that [itex]C[a,b][/itex] is a closed subspace, it is enough to notice that on [itex]C[a,b][/itex] we have [itex]||\cdot||_{\infty} = ||\cdot||_{\mathrm{max}}[/itex], and that the uniform limit of a uniformly convergent sequence of continuous functions is continuous. So there does not seem to be much to this problem.

My text introduces this problem in the context of the Hahn-Banach Theorem along with other results about linear functionals. In particular, I know that [itex]C[a,b][/itex] is closed if and only if for each [itex]f \in L^{\infty}[a,b] \setminus C[a,b][/itex] there exists a continuous linear functional [itex]\psi[/itex] which vanishes on [itex]C[a,b][/itex] but does not vanish at [itex]f[/itex]. Any help with this?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Prove [itex]C[a,b][/itex] a closed linear subspace of [itex]L^{\infty}[a,b][/itex]

**Physics Forums | Science Articles, Homework Help, Discussion**