1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Prove limit theorem f(x)g(x)=lm

  1. Sep 24, 2011 #1
    Hey i am trying to understand Spivak's proof of lim x->a of f(x)g(x)=lm (where l is limit of f(x) and m is lim of g(x) )..but i think he is skipping many steps and at one point i dont understand why he is doing something..

    ok so the following i understand:

    [itex]\left|f(x)g(x)-lm\right|[/itex]< E
    [itex]\leq[/itex][itex]\left|f(x)\right|[/itex][itex]\left|g(x)-m\right|[/itex] + [itex]\left|m\right|[/itex][itex]\left|f(x)-l\right|[/itex]<E

    [itex]\left|f(x)-l\right|[/itex][itex]\leq[/itex]1
    [itex]\left|f(x)\right|[/itex][itex]\leq[/itex][itex]\left|l\right|[/itex]+1

    [itex]\left|f(x)\right|[/itex][itex]\left|g(x)-m\right|[/itex]<([itex]\left|l\right|[/itex]+1)[itex]\left|g(x)-m\right|[/itex]<E/2
    [itex]\left|g(x)-m\right|[/itex]< [itex]\frac{E}{2(\left|l\right|+1)}[/itex]

    [itex]\left|f(x)\right|[/itex][itex]\left|g(x)-m\right|[/itex]<([itex]\left|l\right|[/itex]+1)[itex]\frac{E}{2(\left|l\right|+1)}[/itex]

    [itex]\left|f(x)\right|[/itex][itex]\left|g(x)-m\right|[/itex]<E/2


    ok so now i am guessing that we wanna say that [itex]\left|m\right|[/itex][itex]\left|f(x)-l\right|[/itex]<E/2 so that E/2 + E/2 = E
    so can u just say:
    [itex]\left|m\right|[/itex][itex]\left|f(x)-l\right|[/itex]<E/2
    [itex]\left|f(x)-l\right|[/itex]<E/(2[itex]\left|m\right|[/itex])

    cus i mean m is just a constant..it cant be restricted like f(x) was...

    so:
    [itex]\left|m\right|[/itex][itex]\left|f(x)-l\right|[/itex]<[itex]\left|m\right|[/itex](E/(2[itex]\left|m\right|[/itex]))= E/2

    so then:
    [itex]\left|f(x)\right|[/itex][itex]\left|g(x)-m\right|[/itex] + [itex]\left|m\right|[/itex][itex]\left|f(x)-l\right|[/itex]< E/2 + E/2 =E

    when [itex]\left|f(x)-l\right|[/itex] < min (1, E/(2|m|) ) and [itex]\left|g(x)-m\right|[/itex]<[itex]\frac{E}{2(\left|l\right|+1)}[/itex]



    but Spivak is saying that [itex]\left|f(x)-l\right|[/itex] < min (1, E/( 2(|m|+1) ) ) and i have no clue why... help plsss?
     
    Last edited: Sep 24, 2011
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted