Prove. Pauli matrices.

  • #1
587
10

Homework Statement


Prove
[tex]\exp (\alpha \hat{\sigma}_z+\beta \hat{\sigma}_x)=\cosh \sqrt{\alpha^2+\beta^2}+\frac{\sinh \sqrt{\alpha^2+\beta^2}}{\sqrt{\alpha^2+\beta^2}}(\alpha \hat{\sigma}_z+\beta \hat{\sigma}_x)[/tex]



Homework Equations


[tex]e^{\hat{A}}=\hat{1}+\hat{A}+\frac{\hat{A}^2}{2!}+...[/tex]



The Attempt at a Solution


[tex]\exp (\alpha \hat{\sigma}_z+\beta \hat{\sigma}_x)=\hat{1}+\alpha \hat{\sigma}_z+\beta \hat{\sigma}_x+\frac{1}{2!}(\alpha^2\hat{\sigma}_z^2+\beta^2\hat{\sigma}_x^2+\alpha \beta \hat{\sigma}_x\hat{\sigma}_z+\alpha \beta \hat{\sigma}_z\hat{\sigma}_x)+...[/tex]
from that
[tex]\exp (\alpha \hat{\sigma}_z+\beta \hat{\sigma}_x)=\hat{1}+\alpha \hat{\sigma}_z+\beta \hat{\sigma}_x+\frac{1}{2!}(\alpha^2\hat{1}+\beta^2\hat{1}+\alpha \beta \hat{\sigma}_x\hat{\sigma}_z+\alpha \beta \hat{\sigma}_z\hat{\sigma}_x)+...[/tex]
Is this way to go? I'm not sure?
 

Answers and Replies

  • #2
112
8
Have you seen an expression for ##(\vec{n}\cdot \hat{\vec{\sigma}})^k##, with ##\vec{n}## a unit vector?

[edit: no problem]
 
Last edited:
  • #3
196
22
Hi LagrangeEuler!

The series above simplifies drastically when you figure out what to do with [itex]\sigma_x \sigma_z + \sigma_z \sigma_x[/itex].

:smile:

[edit: sorry Bloby, posted over you by mistake]
 
  • #4
20
5
Check out the anticommuntation properties {sig_x,sig_z} = 0, so there is a lot of cancelations.
 
  • #5
587
10
Have you seen an expression for ##(\vec{n}\cdot \hat{\vec{\sigma}})^k##, with ##\vec{n}## a unit vector?

[edit: no problem]
I don't see connection with this problem?
 
  • #6
587
10
Hi LagrangeEuler!

The series above simplifies drastically when you figure out what to do with [itex]\sigma_x \sigma_z + \sigma_z \sigma_x[/itex].

:smile:

[edit: sorry Bloby, posted over you by mistake]
Tnx a lot.
 
  • #7
112
8
I don't see connection with this problem?
With ##\sqrt{\alpha^2+\beta^2}=a##, ##exp((\beta , 0 , \alpha)\cdot (\hat{\sigma}_x , \hat{\sigma}_y , \hat{\sigma}_z))=exp(\sqrt{\beta^2+\alpha^2}(\hat{n}\cdot \hat{\vec{\sigma}}))=I+a(\hat{n}\cdot\hat{\vec{\sigma}})+\frac{1}{2!}a^2(\quad)^2+...##
 
Last edited:

Related Threads on Prove. Pauli matrices.

  • Last Post
Replies
18
Views
3K
  • Last Post
Replies
3
Views
4K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
0
Views
880
  • Last Post
Replies
2
Views
6K
  • Last Post
Replies
1
Views
2K
Replies
1
Views
3K
Replies
3
Views
5K
  • Last Post
Replies
4
Views
7K
Replies
6
Views
2K
Top