End n(k) is the set of all polynomial mappings: k^n->k^n. i have to prove that end n(k) is a monoid.(adsbygoogle = window.adsbygoogle || []).push({});

k is a field of q elements and n is the number of variables.

the composition of two mappings F G is: F o G = F o G(v) = [F1(G1(v),..Gn(v)), ... Fn(G1(v),...Gn(v))]

i must prove that the composition is associative and that there is a unit element.

id=X=(x1,...,xn) is obviously the unit.

but how do i prove associativity? i was thinking of using commutativity somehow:(x^n)^m = x^(n*m) = x^(m*n) = (x^m)^n

last, how do i show that End n(k) is not a ring? is it distributivity it fails? for all x,y,z E A ->

(x+y)z=xz + yz og z(x+y)=zx + zy

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Prove that a set is a monoid, but not a ring.

**Physics Forums | Science Articles, Homework Help, Discussion**