Prove that △ABC is isosceles.

  • MHB
  • Thread starter anemone
  • Start date
  • #1
anemone
Gold Member
MHB
POTW Director
3,885
11,584
Triangle $ABC$ has the following property: there is an interior point $P$ such that $\angle PAB=10^{\circ},\, \angle PBA=20^{\circ}, \angle PCA=30^{\circ}$, and $\angle PAC = 40^{\circ}$. Prove that triangle $ABC$ is isosceles.
 

Answers and Replies

  • #2
anemone
Gold Member
MHB
POTW Director
3,885
11,584
My solution:
Isosceles Triangle ABC.png



Let

i. $\triangle ABQ$ be an isosceles triangle where $\angle QAB=\angle QBA=20^{\circ}$ and the points $B, P$ and $Q$ are collinear and
ii. $\triangle ACR$ be another isosceles triangle where $\angle RAC=\angle RCA=30^{\circ}$ and the points $C, R$ and $P$ are collinear.

Consider $\triangle ABQ$, by applying the Sine Rule, we get
$\dfrac{AB}{\sin 140^{\circ}}=\dfrac{BQ}{\sin 20^{\circ}}\implies AB=2BQ\cos 20^{\circ}$

Now, in order to relate $AC$ in terms of $BQ$, we do the following:
$\dfrac{AC}{\sin 120^{\circ}}=\dfrac{AR}{\sin 30^{\circ}}\\ \dfrac{AR}{\sin 110^{\circ}}=\dfrac{AP}{\sin 60^{\circ}}\\ \dfrac{AP}{\sin 140^{\circ}}=\dfrac{AQ}{\sin 30^{\circ}}\\ \implies AC=\dfrac{\sin 120^{\circ}}{\sin 30^{\circ}}\dfrac{\sin 110^{\circ}}{\sin 60^{\circ}}\dfrac{\sin 140^{\circ}}{\sin 30^{\circ}}AQ=4\sin 70^{\circ}\sin 40^{\circ}BQ=4\cos 20^{\circ}\sin 40^{\circ}BQ$

Last, we consider $\triangle ABC$, by applying the Cosine Rule, we get
$\begin{align*}BC^2&=AB^2+AC^2-2ABAC\cos 50^{\circ}\\&=(2BQ\cos 20^{\circ})^2+(4\cos 20^{\circ}\sin 40^{\circ}BQ)^2-2(2BQ\cos 20^{\circ})(4\cos 20^{\circ}\sin 40^{\circ}BQ)\sin 40^{\circ}\\&=4BQ^2\cos^2 20^{\circ}(1+4\sin^2 40^{\circ}-4\sin^2 40^{\circ})\end{align*}\\ \therefore BC=2BQ\cos 20^{\circ}$

Hence, we have proved that $AB=BC\ne AC$ and that $\triangle ABC$ is isosceles.

Remark: I apologize for attaching a triangle that is so lacking in the labeling of the measure of angles. I wanted to use TiKZ to render my triangle initially but since we have disabled it (temporarily) in order to fix some other technical issue, and that I thought it was time to post solution to this challenge by now, it left me no choice but have to go ahead to use the far less than satisfactory diagram. But I hope it does justice to its purpose and let you make sense of my argument.
 
Last edited:

Suggested for: Prove that △ABC is isosceles.

  • Last Post
Replies
0
Views
445
  • Last Post
Replies
1
Views
423
Replies
2
Views
384
Replies
1
Views
734
  • Last Post
Replies
33
Views
565
Replies
1
Views
528
  • Last Post
Replies
2
Views
605
  • Last Post
Replies
4
Views
3K
Replies
8
Views
754
Top