1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Prove that if the cancellation law holds from both sides in a set, it forms a group.

  1. Nov 22, 2011 #1
    1. The problem statement, all variables and given/known data

    Let G be a finite nonempty set with an operation * such that:
    1. G is closed under *.
    2. * is associative.
    3. Given a,b,c in G with a*b=a*c, then b=c.
    4. Given a,b,c in G with b*a=c*a, then b=c.

    Prove that G must be a group under *.

    3. The attempt at a solution

    It's obvious that identity element satisfies the conditions 3 and 4, but I don't know whether that proves that the identity element is contained in G or not? moreover, How can I show that the inverse of any element in G is contained in G?
     
  2. jcsd
  3. Nov 22, 2011 #2

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Re: Prove that if the cancellation law holds from both sides in a set, it forms a gro

    You have to prove there IS an identity first. Start by picking any element g and defining f(x)=gx. Show using cancellation that f is an injective map from G->G. Since G is finite that makes it a bijection. So there exists an element e such that ge=g. Can you show eg=g? Can you show eh=he=h for ANY element of G, not just g?
     
  4. Nov 22, 2011 #3
    Re: Prove that if the cancellation law holds from both sides in a set, it forms a gro

    let's take [itex]f(x_1)=f(x_2)[/itex], hence, [itex]g*x_1=g*x_2[/itex] and the third axiom implies [itex]x_1=x_2[/itex]. that proves f is injective.
    if I've understood you correctly then I disagree with this part, f can be injective and finite, and yet it fails to be surjective. It's obvious from the definition of f that it's bijective though, so let's continue.

    sounds fine.

    sure, I just need to define [itex]f':G \to G , f(x)=xg[/itex] and prove that f' is bijective. true?

    well, g was no sacred element and we had stated 'pick any element g in G'. Doesn't that already suffice to conclude that? all we need to do is that we should define a new f. so if we denote the dependence of f on g by [itex]f_g: G \to G[/itex] that would be fine. right?

    OK. so now it's also easy to verify that the inverse of any element exists, It deploys the same logic about bijectivity but I'm failing at formalizing it. Could you help please?
     
  5. Nov 22, 2011 #4

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Re: Prove that if the cancellation law holds from both sides in a set, it forms a gro

    f is bijective because G is finite. Since f is injective the image f(G) contains the same number of elements as G and is contained in G. And sure, for any two elements of the group g and h you can find elements such that g*e_g=g and h*e_h=h. But now you have to show e_g=e_h.
     
  6. Nov 22, 2011 #5
    Re: Prove that if the cancellation law holds from both sides in a set, it forms a gro

    Alright. I forgot that f was from G to G. that's right.
    Now I see what you mean. makes sense. I'll think about it.
    How about proving the existence of inverses?
     
  7. Nov 22, 2011 #6

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Re: Prove that if the cancellation law holds from both sides in a set, it forms a gro

    Get inverses the same way you got an identity.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Prove that if the cancellation law holds from both sides in a set, it forms a group.
Loading...