- #1
- 6
- 1
Prove that summation of n(n+1)/2 is true for all integers. Why is my proof not valid?
Could someone explain to me how this is not a valid proof of the summation of "i" from i=1 to n:
n(n+1)/2
Show for base cases:
n=1: 1(1+1)/2=1
n=2: 2(2+1)/2=3
n=3: 3(3+1)/2=6
...
inductive hypothesis: 1+2+...+(n-1)=n(n-1)/2
((n-1)*n)/2 + n =
((n-1)*n)/2 + 2*n/2 =
((n-1)*n + 2*n)/2 =
((n-1 + 2)*n)/2 =
((n+1)*n)/2 =
(n*(n+1))/2.
Could someone explain to me how this is not a valid proof of the summation of "i" from i=1 to n:
n(n+1)/2
Show for base cases:
n=1: 1(1+1)/2=1
n=2: 2(2+1)/2=3
n=3: 3(3+1)/2=6
...
inductive hypothesis: 1+2+...+(n-1)=n(n-1)/2
((n-1)*n)/2 + n =
((n-1)*n)/2 + 2*n/2 =
((n-1)*n + 2*n)/2 =
((n-1 + 2)*n)/2 =
((n+1)*n)/2 =
(n*(n+1))/2.
Last edited: