Prove that the dual norm is in fact a norm

  • Thread starter Dafe
  • Start date
  • #1
Dafe
145
0

Homework Statement


Let [tex]||\cdot |[/tex]| denote any norm on [tex]\mathbb{C}^m[/tex]. The corresponding dual norm [tex]||\cdot ||'[/tex] is defined by the formula [tex]||x||^=sup_{||y||=1}|y^*x|[/tex].
Prove that [tex]||\cdot ||'[/tex] is a norm.

Homework Equations


I think the Hölder inequality is relevant: [tex]|x^*y|\leq ||x||_p ||y||_q, 1/p+1/q=1[/tex] with [tex]1\leq p, q\leq\infty[/tex]

The Attempt at a Solution


Since a norm is a function satisfying three properties, I need to show that they hold.

(1) [tex]||x||'=0[/tex] if and only if [tex]x=0[/tex].
(2) [tex]||\alpha x||'=|\alpha| ||x||^[/tex].
(3) [tex]||x+z||'\leq ||x||^+||z||^[/tex].

I manage to do (1) and (2) just fine, but the triangle inequality (3) is giving me problems.

I use the Hölder inequality to get the following:

[tex]||x+z||'=sup_{||y||=1}|y^*(x+z)|\leq ||y|| ||x+z||=||x+z||[/tex]

[tex]||x||'=sup_{||y||=1}|y^*x|\leq ||y|| ||x|| =||x||[/tex]

[tex]||z||'=sup_{||y||=1}|y^*z|\leq ||y|| ||z|| =||z||[/tex]

(1) [tex]||x||'\leq ||x||[/tex]
(2) [tex]||z||'\leq ||z||[/tex]
(3) [tex]||x||'+||z||' \leq ||x||+||z||[/tex]

I also know that
(4) [tex]||x+z|| \leq ||x||+||z||[/tex]

I am unable to show that [tex]||x+z||\leq ||x||'+||z||'[/tex] which I think I must if I am to prove the triangle inequality.

Any help is appreciated.
 

Answers and Replies

  • #2
dirk_mec1
761
13
[tex]||x+z||'=sup_{||y||=1} |y^*(x+z)| = sup_{||y||=1} | y^*x + y^*z | \leq sup_{||y||=1} | y^*x| + sup_{||y||=1} |y^*z | = ||x||' + ||z||' [/tex]

The supremum-norm is a norm.
 
Last edited:
  • #3
Dafe
145
0
Ah, didn't think of it that way. Thank you very much.
 

Suggested for: Prove that the dual norm is in fact a norm

  • Last Post
Replies
5
Views
149
Replies
24
Views
410
Replies
11
Views
755
Replies
16
Views
544
Replies
2
Views
153
Replies
18
Views
663
Replies
16
Views
480
Replies
12
Views
787
Top