Is a + (1/√2)(b-a) Irrational?

  • Thread starter charmedbeauty
  • Start date
  • Tags
    Irrational
Hi there! In summary, the conversation discusses a proof for the irrationality of a mathematical expression, involving rational numbers and the square root of 2. The conversation also includes a discussion about using properties of rational numbers in the proof and the necessity of proving the irrationality of the square root of 2 in order to complete the proof.
  • #1
charmedbeauty
271
0

Homework Statement



Prove that if a and b are rational numbers with a≠b then

a+(1/√2)(b-a) is irrational.



Homework Equations





The Attempt at a Solution



Assume that a+(1/√2)(b-a) is rational.

then by definition of rationality

a+(1/√2)(b-a) =p/q for some integers p&q

so a+(b-a)/√2 =p/q

a(1+(b-1)/√2) = p/q

so (p/qa) -1= (b-1)/√2

qa/p-1= √2/(b-1)

so √2 = (b-1)((qa/p) -1)

but (b-1)((qa/p) -1) is rational since b,1,q,a,p are all integers and the sum, difference and products of integers are integers.

but √2 is not an integer. Contradiction a+(1/√2)(b-a) must be irrational.
 
Physics news on Phys.org
  • #2
charmedbeauty said:
so a+(b-a)/√2 =p/q

a(1+(b-1)/√2) = p/q

This step is incorrect.

If [tex]a+\frac{b-a}{\sqrt{2}}=\frac{p}{q}[/tex]

then in order to factorize out a from the LHS, you'll need a factor of a in each and every term, but the LHS can also equivalently be written like this:

[tex]a+\frac{b}{\sqrt{2}}-\frac{a}{\sqrt{2}}[/tex]

So factoring out a would look like this:

[tex]a\left(1+\frac{b}{a\sqrt{2}}-\frac{1}{\sqrt{2}}\right)[/tex]

and not

[tex]a\left(1+\frac{b-1}{\sqrt{2}}\right)=a\left(1+\frac{b}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)[/tex]

charmedbeauty said:
so (p/qa) -1= (b-1)/√2

qa/p-1= √2/(b-1)
This step is also incorrect. If we have something of the form

[tex]\frac{a}{b}+c[/tex]
then the reciprocal of that is not [tex]\frac{b}{a}+c[/tex]

Take that extra minute to do the steps in between to find out what it is.

charmedbeauty said:
so √2 = (b-1)((qa/p) -1)

but (b-1)((qa/p) -1) is rational since b,1,q,a,p are all integers and the sum, difference and products of integers are integers.

but √2 is not an integer. Contradiction a+(1/√2)(b-a) must be irrational.

The logic to answer the question is correct though, you just need to fix up your algebra.

Oh and all you need to do is solve for [itex]\sqrt{2}[/itex] so factorng out a is a pointless step.
 
  • #3
Mentallic said:
This step is incorrect.

If [tex]a+\frac{b-a}{\sqrt{2}}=\frac{p}{q}[/tex]

then in order to factorize out a from the LHS, you'll need a factor of a in each and every term, but the LHS can also equivalently be written like this:

[tex]a+\frac{b}{\sqrt{2}}-\frac{a}{\sqrt{2}}[/tex]

So factoring out a would look like this:

[tex]a\left(1+\frac{b}{a\sqrt{2}}-\frac{1}{\sqrt{2}}\right)[/tex]

and not

[tex]a\left(1+\frac{b-1}{\sqrt{2}}\right)=a\left(1+\frac{b}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)[/tex]


This step is also incorrect. If we have something of the form

[tex]\frac{a}{b}+c[/tex]
then the reciprocal of that is not [tex]\frac{b}{a}+c[/tex]

Take that extra minute to do the steps in between to find out what it is.



The logic to answer the question is correct though, you just need to fix up your algebra.

Oh and all you need to do is solve for [itex]\sqrt{2}[/itex] so factorng out a is a pointless step.

Thanks a bunch Mentallic!

so keeping the logic the same the algebra should look a little more like this...

a+ (1/√2)(b-a)=p/q

(1/√2)(b-a)=(p/q)-a


√2 = (b-a)/((p/q)-a)

but (b-a)/((p/q)-a) is rational...Hence a+ (1/√2)(b-a) is irrational.

end of proof.
 
  • #4
charmedbeauty said:
Thanks a bunch Mentallic!

so keeping the logic the same the algebra should look a little more like this...

a+ (1/√2)(b-a)=p/q

(1/√2)(b-a)=(p/q)-a


√2 = (b-a)/((p/q)-a)

but (b-a)/((p/q)-a) is rational...Hence a+ (1/√2)(b-a) is irrational.

end of proof.
That looks much better !
 
  • #5
What properties of rational numbers are you allowed to use?
The rational numbers are closed under addition and subtraction so the first thing I would have done is say "if [itex]a+ (b- a)/\sqrt{2}= r[/itex], a rational number, then [itex](b- a)/\sqrt{2}= r- a[/itex] is rational. Since [itex]b\ne a[/itex], [itex]b- a\ne 0[/itex] and, since the rational numbers are closed under division by any number other than 0, [itex]1/\sqrt{2}= (r- a)/(b- a)[/itex] is rational.

Finally, since 1 over any number is not 0 and b- a is not 0, [itex]b- a/\sqrt{2}[/itex] is not 0 so r- a is not 0, so we would have to conclude that [itex]\sqrt{2}= (b- a)/(r- a)[/itex] is rational. Now, if you already know that [itex]\sqrt{2}[/itex] is not rational, that sufficient. If you do not already have that, it is fairly easy to prove just as you were progressing.
 
  • #6
HallsofIvy said:
What properties of rational numbers are you allowed to use?
The rational numbers are closed under addition and subtraction so the first thing I would have done is say "if [itex]a+ (b- a)/\sqrt{2}= r[/itex], a rational number, then [itex](b- a)/\sqrt{2}= r- a[/itex] is rational. Since [itex]b\ne a[/itex], [itex]b- a\ne 0[/itex] and, since the rational numbers are closed under division by any number other than 0, [itex]1/\sqrt{2}= (r- a)/(b- a)[/itex] is rational.

Finally, since 1 over any number is not 0 and b- a is not 0, [itex]b- a/\sqrt{2}[/itex] is not 0 so r- a is not 0, so we would have to conclude that [itex]\sqrt{2}= (b- a)/(r- a)[/itex] is rational. Now, if you already know that [itex]\sqrt{2}[/itex] is not rational, that sufficient. If you do not already have that, it is fairly easy to prove just as you were progressing.

That's the thing that confuses me with these proofs... Is it fair to say that √2 is irrational without proving it, because it is sought of a tautology.
 
  • #7
I said "Now, if you already know that [itex]\sqrt{2}[/itex] is not rational, that sufficient. If you do not already have that, it is fairly easy to prove just as you were progressing."
It is "fair to say that [itex]\sqrt{2}[/itex] is irrational" if that has already been proven. If not, as I said, it is easier to prove than this number, using the same ideas as you did: if [itex]\sqrt{2}[/itex] were rational, we could write [itex]\sqrt{2}= m/n[/itex] for integers , m and n where m and n have no common factors. Squaring, [itex]2= m^2/n^2[/itex] and so [itex]m^2= 2n^2[/itex]. The square of any odd number is odd ([itex](2i+1)^2= 4i^2+ 4i+ 1= 2(2i^2+ 2i)+ 1)[/itex] so since [itex]m^2[/itex] is even, m must be even. That is, m= 2k for some integer k. In that case, [itex]2n^2= (2k)^2= 4k^2[/itex] and so [itex]n^2= 2k^2[/itex]. Since [itex]n^2[/itex] is even, n must also be even, contradicting the fact that m and n have no common factors.
 
Last edited by a moderator:
  • #8
HallsofIvy said:
I said "Now, if you already know that [itex]\sqrt{2}[/itex] is not rational, that sufficient. If you do not already have that, it is fairly easy to prove just as you were progressing."
It is "fair to say that [itex]\sqrt{2}[/itex] is irrational" if that has already been proven. If not, as I said, it is easier to prove than this number, using the same ideas as you did: if [itex]\sqrt{2}[/itex] were rational, we could write [itex]\sqrt{2}= m/n[/itex] for integers , m and n where m and n have no common factors. Squaring, [itex]2= m^2/n^2[/itex] and so [itex]m^2= 2n^2[/itex]. The square of any odd number is odd ([itex](2i+1)^2= 4i^2+ 4i+ 1= 2(2i^2+ 2i)+ 1) so since [itex]m^2[/itex] is even, m must be even. That is, m= 2k for some integer k. In that case, [itex]2n^2= (2k)^2= 4k^2[itex] and so [itex]n^2= 2k^2[/itex]. Since [itex]n^2[/itex] is even, n must also be even, contradicting the fact that m and n have no common factors.

Ok thanks but the original question does not tell you if √2 is rational or irrational. It just asks about the number involving the √2... So in a test situation would it be necessary to prove that √2 is irrational as a sought of "side proof"?
 
  • #9
HallsofIvy said:
...for integers , m and n where m and n have no common factors.
But then you would also need to prove that any ratio of two integers can be re-written as a ratio of two integers with no common factors. (since a rational number is defined as being a ratio of any two integers, with the denominator being non-zero).

charmedbeauty said:
So in a test situation would it be necessary to prove that √2 is irrational as a sought of "side proof"?
Good question. I would think it's sufficient to just say 'and the square root of two is irrational'. But I only did a physics degree, so I am not familiar with how mathematical proofs are examined.
 
  • #10
BruceW said:
But then you would also need to prove that any ratio of two integers can be re-written as a ratio of two integers with no common factors. (since a rational number is defined as being a ratio of any two integers, with the denominator being non-zero).Good question. I would think it's sufficient to just say 'and the square root of two is irrational'. But I only did a physics degree, so I am not familiar with how mathematical proofs are examined.

Thanks BruceW... I have noticed that they overly anal about some things thoe!
 
  • #11
BruceW said:
But then you would also need to prove that any ratio of two integers can be re-written as a ratio of two integers with no common factors. (since a rational number is defined as being a ratio of any two integers, with the denominator being non-zero).
Every text I have seen defines a rational number as the ratio of two integer, having no common factors.
 
  • #12
really? so 6/3 is not a rational number? I'm not a mathematician, so I don't know these things...
 
  • #13
BruceW said:
really? so 6/3 is not a rational number? I'm not a mathematician, so I don't know these things...

it seems no one has a definition for irrational numbers... not even mathematicians
 
  • #14
I think he means the ratio of two integers is in its most reduced form have no common factor...
 
  • #15
HallsofIvy said:
Every text I have seen defines a rational number as the ratio of two integer, having no common factors.

I'm not sure I believe that. In fact I'm sure I don't believe that. Because the "no common factors" condition is superflous to the definition. As someone else pointed out, 6/3 is a perfectly good rational number. I don't need to reduce it to lowest terms to see that it's rational, because it's the ratio of two integers. Period.

Not that "proof by Wiki" is the last word, but they agree with this point.

a rational number is any number that can be expressed as the quotient or fraction a/b of two integers, with the denominator b not equal to zero.

http://en.wikipedia.org/wiki/Rational_number
 

1. What does it mean for a number to be irrational?

A number is considered irrational if it cannot be expressed as a fraction of two integers. This means that it cannot be written as a simple ratio of two whole numbers.

2. How do you prove that a number is irrational?

To prove that a number is irrational, you must show that it cannot be written as a fraction of two integers. This can be done using various mathematical techniques such as contradiction, proof by induction, or proof by construction.

3. Can any number be proven to be irrational?

No, not every number can be proven to be irrational. Some numbers, such as integers, can be expressed as fractions of two integers and thus are considered rational. Other numbers, such as square roots of perfect squares, are rational as well.

4. Why is it important to prove a number is irrational?

Proving that a number is irrational can help us better understand the properties of numbers and their relationships. It also allows us to solve certain mathematical problems that involve irrational numbers, such as finding the roots of quadratic equations.

5. Can irrational numbers be used in real-life situations?

Yes, irrational numbers can be used in real-life situations. For example, the value of pi, an irrational number, is used in calculations for various engineering and science applications. Irrational numbers also play a role in describing natural phenomena, such as the golden ratio in art and biology.

Similar threads

  • Precalculus Mathematics Homework Help
Replies
1
Views
971
  • Precalculus Mathematics Homework Help
Replies
13
Views
1K
  • Precalculus Mathematics Homework Help
Replies
8
Views
872
  • Precalculus Mathematics Homework Help
Replies
20
Views
1K
  • Precalculus Mathematics Homework Help
Replies
9
Views
1K
  • Precalculus Mathematics Homework Help
Replies
12
Views
2K
  • Precalculus Mathematics Homework Help
Replies
2
Views
2K
  • Precalculus Mathematics Homework Help
Replies
6
Views
988
  • Precalculus Mathematics Homework Help
Replies
15
Views
905
  • Calculus and Beyond Homework Help
Replies
5
Views
1K
Back
Top