1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Prove x_n=(1+1/n)^n

  1. Sep 19, 2005 #1
    i need to prove that the sequence is increasing, i.e, x_n+1>=x_n
    which translates into:
    [(n+2)/(n+1)]^(n+1)>=[(n+1)/n]^n

    i tried through induction but got stumbled:
    n=k
    [(k+2)/(k+1)]^(k+1)>= [(k+1)/k]^k

    n=k+1
    [(k+3)/(k+2)]^(k+2)>=[(k+2)/(k+1)]^(k+1)
    now i need to prove the last inequality, and got baffled.
    any help is appreciated, perhaps induction isn't the right way?

    p.s
    i know this sequence converges to e, so spare me the trivial details about this sequence.
    thanks in advance.
     
  2. jcsd
  3. Sep 19, 2005 #2
    The derivative is > 0
     
    Last edited: Sep 19, 2005
  4. Sep 19, 2005 #3
    So how do you show that
    [tex]\ln \left(1+\frac{1}{x} \right) > \frac{1}{x+1}, \, x>0[/tex]
     
  5. Sep 19, 2005 #4
  6. Sep 19, 2005 #5
    Try with induction by blocks (blocks of 2^k).
     
  7. Sep 19, 2005 #6

    VietDao29

    User Avatar
    Homework Helper

    Or I think you can also expand the terms out, something like:
    [tex]x_n = \left( 1 + \frac{1}{n} \right) ^ n[/tex]
    So:
    [tex]x_n = 1 + n \times \frac{1}{n} + \frac{n (n - 1)}{2!} \times \frac{1}{n ^ 2} + \frac{n (n - 1) (n - 2)}{3!} \times \frac{1}{n ^ 3} + ... + \frac{n (n - 1) (n - 2) ... (n - (n - 1))}{n!} \times \frac{1}{n ^ n}[/tex]
    [tex]= 1 + 1 + \frac{1}{2!} \times \frac{n}{n} \times \frac{n - 1}{n} + \frac{1}{3!} \times \frac{n}{n} \times \frac{n - 1}{n} \times \frac{n - 2}{n} + ... + \frac{1}{n!} \times \frac{n}{n} \times \frac{n - 1}{n} \times \frac{n - 2}{n} \times ... \times \times \frac{n - (n - 1)}{n}[/tex]
    [tex]= 1 + 1 + \frac{1}{2!} \times \left( 1 - \frac{1}{n} \right) + \frac{1}{3!} \times \left( 1 - \frac{1}{n} \right) \times \left( 1 - \frac{2}{n} \right) + ... + \frac{1}{n!} \times \left(1 - \frac{1}{n} \right) \times \left(1 - \frac{2}{n} \right) \times ... \times \left(1 - \frac{n - 1}{n} \right)[/tex]
    You can do the same and come up with:
    [tex]x_{n + 1} = 1 + 1 + \frac{1}{2!} \times \left( 1 - \frac{1}{n + 1} \right) + \frac{1}{3!} \times \left( 1 - \frac{1}{n + 1} \right) \times \left( 1 - \frac{2}{n + 1} \right) + ... + \frac{1}{(n + 1)!} \times \left(1 - \frac{1}{n + 1} \right) \times[/tex]
    [tex]\times \left(1 - \frac{2}{n + 1} \right) \times ... \times \left(1 - \frac{n}{n + 1} \right)[/tex]
    So can you say that xn + 1 > xn?
    Viet Dao,
     
    Last edited: Sep 19, 2005
  8. Sep 19, 2005 #7
    vietdao, from this expansion the inequality does follow.
    but the question how did you arrive to it?
    have you used newton's binomial?
     
  9. Sep 20, 2005 #8
    Binomial Theorem: (can be proved inductively)

    [tex](a+b)^n=\sum_{i=0}^n \frac{n!}{i! (n-i)!}a^ib^{n-i}[/tex]

    here a=1, b=1/n
     
  10. Sep 20, 2005 #9
    well thank you all, i should have thought of newton's binomial.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?