I've come across Problem 2.2 out of Griffiths' Intro to Quantum book second edition. The problem says to show that E must exceed the minimum value of V(x) for all normalizable solutions to the Schroed. eq. Naturally I started with the normalization condition: int(|phi|^2)=1 and started taking derivatives on this. However, I cannot arrive at a contradiction. Any thoughts? Or any other ways to show the same result? Thanks.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Proving E must exceed the min potential

**Physics Forums | Science Articles, Homework Help, Discussion**