Ok... So today, someone asked me a simple question: Why do two negatives become a positive number when multiplied together? This is intuitively basic, but not as easy to prove (unless there's some simple proof that I didn't think of). This was the basic proof that I came up with:(adsbygoogle = window.adsbygoogle || []).push({});

Let a, b, c > 0 and a, b, c [tex]\in[/tex] R.

a > 0

a/(-b) < 0/(-b)

a/(-b) < 0

a/(-b)(-c) > 0/(-b)(-c)

a/(-b)(-c) > 0

Since a/(-b)(-c) is greater than 0, and a is positive, then (-b)(-c) must also be positive. Therefore, multiplying by two negatives will produce a positive.

I know my proof isn't very good, but I am not a mathematician. I thought that I came up with a semi-decent way to show that multiplying two negatives together will produce a positive number. Now, the next question that person asked me was: Well then why does the inequality flip over when you divide by a negative? Again, it's intuitively obvious but I do not know how to prove it. Does anyone know how I could prove that or a better way to prove what I just attempted to prove?

P.S. I meant to put this in general math because it would be more appropriate there, but I accidently posted it here and cannot delete it. So maybe a moderator can move it...

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proving Inequalities

**Physics Forums | Science Articles, Homework Help, Discussion**