Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Proving infinately many primes 12k-1

  1. Mar 11, 2005 #1
    This is a particularly fun problem! Its on a homework that I already turned in.

    I used the proof by contradiction method. I just need a clarification point.

    I started by assuming finite number of primes of form 12k-1. suppose N = (6*P1*P2...*Pn)^2 - 3 and set the congruence (6*P1*P2..*Pn)^2 congruent to 3 (mod p)

    Then N = 36k-3 N must have a q such that q | N and q | (6*P1*P2..*Pn)
    leaving q|3, but q is of the form 12k-1, and cannot divide 3.

    is this correct? could someone straighten this out a bit more for me? make it more simple/concise?
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted