I would like to prove that [itex] \ell^{\infty}[/itex], namely the Banach space whose elements are sequences of complex numbers that have a fininte infinity-norm (a.k.a. the supremum-norm,) that is for [itex]\alpha = \left\{ \alpha_k \right\}_{k=1}^{\infty},[/tex](adsbygoogle = window.adsbygoogle || []).push({});

[tex] \ell^{\infty}=\left\{\alpha : \sup\left\{ \left| \alpha_n \right| : n\in\mathbb{N}\right\}<\infty \right\}, [/tex] normed by [tex]\| \alpha\|_{\infty}=\sup\left\{ \left| \alpha_n \right| : n\in\mathbb{N}\right\}[/tex]

is not separable, that is that it does not possess a countable dense basis. I do not well understand what it means for a space to be separable : does it mean that any element (e.g. any sequence, vector, function, ...) of that space can be expressed as either a linear combination of the elements (say, functions) of some countable (basis?) set or a limit thereof?

Would someone please clearly explain this topic that I might more fully understand it, and, perhaps, the concept of dual spaces: specifically, why is [itex] \ell^{\infty}=(\ell^{1})^*[/itex]? where X* denotes the dual space of X and where [itex] \ell^{1}[/itex] is the Banach space of sequences of complex numbers defined by

[tex] \ell^{1}=\left\{\alpha : \sum_{k=1}^{\infty} \left| \alpha_k \right| <\infty \right\}, [/tex] normed by [tex]\| \alpha\|_{1}=\sum_{k=1}^{\infty} \left| \alpha_k \right|[/tex]

And, why, despite this relationship, is [itex] (\ell^{\infty})^*=(\ell^{1})^{**}\neq \ell^{1}[/itex]? I realize that I have asked alot, but I would rather that sufficient information be put forth that I could join-in the discussion.

Thanks,

--Ben

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Proving l^{\infty} (sequence space w/infinity norm) is not separable, and dual spaces

**Physics Forums | Science Articles, Homework Help, Discussion**