Here's the problem:(adsbygoogle = window.adsbygoogle || []).push({});

A one dimensional harmonic oscillator has mass m and frequency w. A time dependent state psi(t) is given at t=0 by:

psi(0)=1/sqrt(2s)*sum(n=N-s,n=N+s) In>

where In> are the number eigenstates and N>>s>>1.

Calculate <x>. Show it varies sinusoidally; find the frequency and amplitude. Compare the amlitude and frequency to the corresponding values of a classical harmonic oscillator.

Here's how I proceeded:

<x>=(1/2s) (some constants)*sum(n=N-s,n=N+s)*sum(m=N-s,m=N+s) <n I (a+a') I m> Exp[i(Em-En)t/h]

(note a' is "a dagger")

=(1/2s) (some constants)*sum(n=N-s,n=N+s)*sum(m=N-s,m=N+s) {sqrt(m) <n I m-1> + sqrt(m+1) <n I m+1>} Exp[i(En-Em)t/h]

(note <n I m-1>=delta(n,m-1) and <n I m+1>=delta(n,m+1).

=(1/2s) (some constants)*sum(n=N-s,n=N+s) {sqrt(m+1) Exp[-iwt] + sqrt(m) Exp[iwt]}

This is where I get stuck. I don't know if I'm supposed to make some approximation since N>>s>>1, and approximate the term in the {} as sqrt(m) cos (wt), or if I'm just completely wrong from the start. If someone can help, I'd really appriciate it.

**Physics Forums - The Fusion of Science and Community**

# Q.M. harmonic oscillator

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

- Similar discussions for: Q.M. harmonic oscillator

Loading...

**Physics Forums - The Fusion of Science and Community**