Consider an infinite well of lenght L. We measure the position of the particle and obtain x=L/2. After the measurement, what is the probability of finding the particle in a given eigenstate?(adsbygoogle = window.adsbygoogle || []).push({});

My solution: WhaaaaaAaaT ?! Neither Gasiorowicz and Griffiths talk about the probability of the particle being in a certain wave function! I tought the wave function was that one thing that was determinate in QM. Worst, the one clue I have is contradictory to the statement of the problem; it is when Griffiths says that if we measure the position of a particle, then its wave function must crumble into a dirac delta about this position so that another measurement performedright afterwill be guarenteed to return the same position. A Dirac delta function is no eigenstate of the particle in the box, hence a contradiction. (unless the answer to the problem is in fact 0% for that very reason, but I doubt it.)

Eidt: I kinda recall someone on this forum saying how the wave function can be any linear combination of the eigenstates, but once a measurement is made, it must settle into one of those, but I can't find back the thread.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: QM - another particle in a box

**Physics Forums | Science Articles, Homework Help, Discussion**