There's this question ngyah (Liboff 5.33) that says(adsbygoogle = window.adsbygoogle || []).push({});

"We consider a particle in an infinite 1-dimensional well. The particle is described by an arbitrary wave function [itex]\psi(x)[/itex]. (a) For this particle, show that [itex]<E> \geq E_1[/itex]. (b) What is the condition on [itex]\psi(x)[/itex] such that [itex]<E> = E_1[/itex]?"

My solution: First of all, I'm assuming that by <E> he means <H>. But <H> = E. And E is the energy associated with the superposition of the sine waves that make up [itex]\psi(x)[/itex]. So

[tex]E = \sum_{i=1}^{\infty}c_i E_i[/tex]

where the c_i are either 1 or 0 depending on wheter or not [itex]\psi_i(x) = sin(k_ix)[/itex] is present in the Fourier expansion of [itex]\psi(x)[/itex]. This said, if [itex]\psi_1(x)[/itex] is in the expansion of [itex]\psi(x)[/itex], then [itex]E = E_1 +... \geq E_1[/itex]. If not, then [itex]E = 0\cdot E_1 + ... + 1\cdot E_j +... \geq E_1[/itex].

And for (b), the condition on psi is that psi be exactly psi_1.

That looks pretty neat to me. The only point I'm unsure of is wheter or not, it is true that the energy of a psi made up of a linear combination of other psi_i is the sum of the energy of the psi_i. Actually, this seemsFALSEto me. For suppose psi_1 and psi_2 are solution of the time ind. SE with respective energy eigenvalues E_1 and E_2. Then let's see if psi = psi_1 + psi_2 is a solution with eigenvalue E_1 + E_2.

[tex](E_1+E_2)\psi = (E_1+E_2)(\psi_1 + \psi_2) = E_1\psi_1 + E_2\psi_2 + E_1\psi_2 + E_2\psi_1 = H\psi_1 + H\psi_2 + E_1\psi_2 + E_2\psi_1 = H\psi + E_1\psi_2 + E_2\psi_1 \neq H\psi [/tex]

So the energy of psi_1 + psi_2 is not E_1 +E_2. Correct? Hopefully I'm missing something.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: QM - Find <E>

**Physics Forums | Science Articles, Homework Help, Discussion**