Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

QM problem, operators and tensors math

  1. Mar 1, 2004 #1
    Let [tex]\mathbf{S} = [/tex][tex]\mbox{$\frac {1}{2}$}[/tex][tex](\sigma_1 + \sigma_2)[/tex] be the total spin of a system of two spin-(1/2) particles.

    a) Show that [tex]\mathbf{P} \equiv (\mathbf{S} \cdot \mathbf{r})^2 / {r^2}[/tex] is a projection operator

    b) Show that tensor operator [tex]S_1_2[/tex][tex] = 2(3P - \mathbf{S}^2)[/tex] satisfies [tex]S_1_2[/tex][tex] ^2 = 4\mathbf{S}^2 - 2[/tex][tex]S_1_2[/tex]

    c) Show that the eigenvalues of [tex]S_1_2[/tex] are 0, 2 and -4


    I'm stuck at the first part, and have no idea on how to proceed. I know that if [tex]P[/tex] is a projection operator, then [tex]P^2 = P[/tex] and [tex]P^+ = P[/tex]. So, the first thing I do is expand P to check these properties. First thing I did is getting that [tex]r^2[/tex] inside of the dot product, leaving me with [tex]\mathbf{P} \equiv (\mathbf{S} \cdot \mathbf{n})^2[/tex], where n is an unitary vector.

    [tex]\mathbf{S} = \frac{1}{2} (\sigma_1 + \sigma_2) = \frac{1}{2}\left[ \left(\begin{array}{cc}0 & 1\\1 & 0\end{array}\right) + \left(\begin{array}{cc}0 & -i\\i & 0\end{array}\right)\right] = \frac{1}{2}\left(\begin{array}{cc}0 & 1-i\\1+i & 0\end{array}\right)[/tex]
    [tex]\mathbf{n} = \left(\begin{array}{c} cos \theta \\ sin \theta \end{array}\right)[/tex]
    [tex]\mathbf{S} \cdot \mathbf{n} = \frac{1}{2}\left(\begin{array}{cc}0 & 1-i\\1+i & 0\end{array}\right)\left(\begin{array}{c} cos \theta \\ sin \theta \end{array}\right) = \frac{1}{2}\left(\begin{array}{c} sin \theta - i sin \theta\\ cos \theta + i cos \theta \end{array}\right)[/tex]

    Now, to square it... should I (a) just multiply that vector by itself, or (b) multiply it complex conjungate and the vector???

    a)[tex]\frac {1}{4}\left(sin \theta - i sin \theta , cos \theta + i cos \theta \right) \left( \begin{array}{c} sin \theta - i sin \theta\\ cos \theta + i cos \theta \end{array}\right) = \frac{i}{2}\left(\begin{array}{c} -sin \theta \\ cos \theta \end{array}\right)[/tex]

    I thiunk this is not a proyection operator because [tex]P^+ = P[/tex].

    b)[tex]\frac {1}{4}\left(sin \theta + i sin \theta , cos \theta - i cos \theta \right) \left( \begin{array}{c} sin \theta - i sin \theta\\ cos \theta + i cos \theta \end{array}\right) = \frac{1}{2}\left(\begin{array}{c} sin^2 \theta \\ cos^2 \theta \end{array}\right)[/tex]

    But clearly this is not a proyection operator because [tex]P^2 = P[/tex]

    In some book I found that [tex]\vec{\sigma} \cdot \vec{n} = \sigma_1 sin \theta cos \phi + \sigma_2 sin \theta sin \phi + \sigma_3 cos \theta[/tex]
    If I follow this aproach then
    [tex]\mathbf{S} \cdot \mathbf{n} = \frac {1}{2} \sigma_1 cos \theta + \frac {1}{2} \sigma_2 sin \theta[/tex]
    [tex](\mathbf{S} \cdot \mathbf{n})^2 = \frac {1}{4} \sigma_1^2 cos^2 \theta + \frac {1}{4} \sigma_2^2 sin^2 \theta + \frac {1}{4} \sigma_1 \sigma_2 sin \theta cos \theta + \frac {1}{4} \sigma_2 \sigma_1 sin \theta cos \theta [/tex]
    [tex](\mathbf{S} \cdot \mathbf{n})^2 = \frac {1}{4} \mathbb{I}[/tex]

    The identity matrix is a projection operator, but that constant in front of it is giving me problems. What I'm doing wrong?
    Last edited: Mar 1, 2004
  2. jcsd
  3. Mar 1, 2004 #2

    Tom Mattson

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Hold on. It appears that you are not writing P as a vector. If you are working in 2D (are you allowed to assume that?), then you should write P as:


    But what you have done here is add the σx and σy without paying attention to the fact that they are components of a vector.

    Edit to add: You also seem to be ignoring the fact that you have a 2-particle system. I think you are getting the labels "1" and "2" mixed up with the components of σ, when in fact they are the labels for the spin operators of particles 1 and 2, respectively.
    Last edited: Mar 1, 2004
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook