I'm new to this forum, and I am very excited to be a member of this esteemed community. Anyway, I've been reading the Journey Through Genius, by William Dunham, and I am truly loving it. However, I had a question about a statement in the text, and I thought I'd ask if you guys could help me out with it.(adsbygoogle = window.adsbygoogle || []).push({});

I was reading about Hippocrates' proof that the lune is squarable, and the author said that despite hundreds of years of effort, the circle could not be squared. In other words, that there could not be made a square that has the same area as a circle. This was then proved in the nineteenth century by Ferdinand Lindemann.

Anyway, I understand both Hippocrates proof, and Lindemann's proof, and I believe I fully understand why it'd be impossible to make a square that is the same area as a circle. It makes sense--I mean, pi is transcendental and all, and as such it can not be drawn. However, what I don't understand is why we can still square a curved shape such as a lune. Would not a lune simply be a section of a circle? I mean, doesn't it have that same curve that a circle has--just that it is not a perfect circle?

Basically, what makes a circle so intrinsically special that it can not be squared, while other curved ones can be? Is it simply because their areas are not linked to a transcendental number like the circle is?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Quadrability of a Lune

Loading...

Similar Threads - Quadrability Lune | Date |
---|---|

What is a lune | Jul 23, 2014 |

Area of lune (Geometry problem) | May 28, 2011 |

**Physics Forums - The Fusion of Science and Community**