Write the equation in terms of new caraibles so that it is in standard position and identify the curve(adsbygoogle = window.adsbygoogle || []).push({});

[tex] 3x^2 - 4xy = 2 [/tex]

here a = 3, b = -4, c = 0 , [tex] d = \sqrt{(-4)^2+(3-0)^2} = 5 [/itex]

[tex] \cos\theta = \frac{a+c-d}{\sqrt{b^2 + (a+c-d)^2}} = \frac{-2}{2\sqrt{5}} [/tex]

[tex] \sin\theta = \frac{b}{\sqrt{b^2 + (a+c-d)^2}} = \frac{4}{\sqrt{20}} [/tex]

so [tex] P = \frac{1}{\sqrt{5}} \left(\begin{array}{cc} -1&-2 \\ 2&-1 \end{array}\right) [/tex]

from X = PY i get

[tex] x = \frac{-1}{\sqrt{5}} (x_{1}-2y_{1}) [/tex]

[tex] y = \frac{-1}{\sqrt{5}} (2x_{1}+y_{1}) [/tex]

where x1 and y1 are the new variables

is this fine??

is this how you get the change of variables??

**Physics Forums - The Fusion of Science and Community**

# Quadratic Forms

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Quadratic Forms

Loading...

**Physics Forums - The Fusion of Science and Community**